
INATM

CO₂ capture for a changing energy system

Confidential

Changing CO₂ Landscape

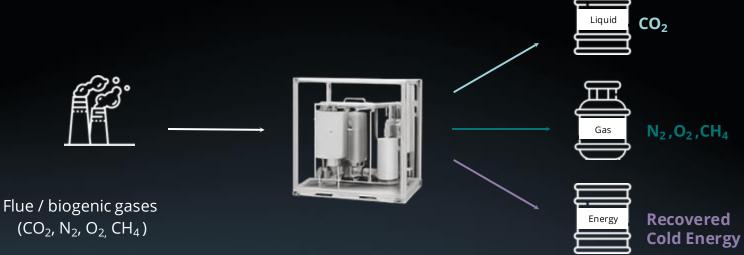
- Traditional capture systems rely on waste heat, which disappears through electrification
- Remaining CO₂ sources (biogenic, process emissions) lack usable heat for capture
- Grid congestion limits power availability and electrification

→ CO₂ capture must operate with limited heat integration and remain flexible under energy constrains.

SOLUTION

Cryogenic CO₂ Capture

- Fully electric
- No chemical solvents
- Low heat requirement
- Pure, liquefied CO₂
- For traditional and electric industries
- Cold energy storage


Confidential

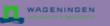
From Waste to Value

Cryogenic unit turning CO₂ gas streams into various outputs while increasing energy flexibility

TRL 4: Laboratory Prototype

Confidential

Recognized for Innovation


Carbon Removal Challenge

TU Delft Contest

4TU Impact Challenge

Industrial Potential

- Energy
- Cement
- Hydrogen
- Chemicals
- Biomethane
- Food
- ..

MEET US

- **info@inatmoscapture.com** *or*
 - Coen. van den Brand@in atmoscapture.com
- www.inatmoscapture.com
- Enschede, The Netherlands

