Final Report 01.01.2005 - 31.12.2007 University of Twente

Espen Steinseth Hamborg

31.12.2007

Contents

Pr	eface	e	7
1	Intr 1.1	Poduction Post-combustion capture	8 8
2	Diss	sociation constants of amino acids used in CO_2 absorption	9
	2.1	Introduction	9
	2.2	Procedure	9
		2.2.1 Amino acids	9
		2.2.2 Dicarboxylic amino acids	12
		2.2.3 Alkanolamines	13
	2.3	Thermodynamic relations	14
	2.4	Experimental	14
	2.5	Chemicals	15
	2.6	Results and discussion	15
	2.7	Conclusion	48
	2.8	Outline of the model of Pitzer	50
		2.8.1 Interaction parameters for KCl in the model of Pitzer	50
		2.8.2 Interaction parameters for HCl in the model of Pitzer	52
	2.9	Experimental equilibrium data	54
		2.9.1 MDEA	54
		2.9.2 β -alanine	57
		2.9.3 Taurine	61
		2.9.4 Sarcosine	64
		2.9.5 6-Aminohexanoic acid	66
		2.9.6 DL-methionine	69
		2.9.7 Glycine	72
		2.9.8 L-phenylalanine	76
		2.9.9 L-proline	79
		2.9.10 L-glutamic acid	82
		2.9.11 L-aspartic acid	84
		2.9.12 Taurine with K^+ and Li^+ as counter ions $\ldots \ldots \ldots$	86
3	Diff	usivities in Aqueous Piperazine and Aqueous (Piperazine	
	+ N	(IDEA) Solutions	87
	3.1	Introduction	87
	3.2	Theory and experimental procedures	88
		3.2.1 Taylor Dispersion Technique - liquid diffusivities	88

Fi	inal d	conclus	sion	122
	5.2	Prelim	ninary results	119
	5.1	Summ	ary	119
5	Ma	ss tran	sfer in absorption and desorption processes	119
	4.4	Conch		110
	4.4	4.0.0 Conch	Gao uniusivity	115
		4.J.2 133	Case diffusivity	112
		4.3.1	VISCOSITY	111 119
	4.3	rtesult	s and discussion	111
	19	4.2.0	Unemicals	111
		4.2.5	Gas diffusivity	111
		4.2.4	Liquid diffusivities	110
		4.2.3	General theory of the Taylor dispersion technique	108
		4.2.2	Viscositiy	108
		4.2.1	Amino acid salt preparation	108
	4.2	Theor	y and experimental procedures	108
	4.1	Introd	luction	107
4	Dif	fusiviti	es in Aqueous Amino Acid Salt Solutions	107
	3.4	Conclu	usion	105
		3.3.5	Diffusivity of N_2O in aqueous PZ solutions	103
		3.3.4	Diffusivity of N_2O in H_2O	99
		3333	Liquid diffusivities in aqueous $(PZ + MDEA)$ solutions	98
		332	Liquid diffusivities in aqueous PZ solutions	94
	0.0	3 3 1	Validation	93
	33	Besult	es and discussion	93
		3.2.2	Chemicals	90
		3.2.2	Taylor Dispersion Technique - gas diffusivities	- 90

List of Figures

2.1	Influence of the dimensionless overall molality of β -alanine on	
	$\ln(K_{2,exp})$: •, experimental values;, linear regression	23
2.2	Influence of the ionic strength on $\ln(K_3)$ of L-glutamic acid: •,	
	experimental values;, linear regression	24
2.3	Dissociation constants of protonated MDEA: •, exp. results this	
	work;, fit this work; \bigtriangledown , Kamps [2]; \triangle , Oscarson [65]; \triangleleft , Kim	
	$[47]; ightarrow$, Littel $[56]; \Diamond$, Schwabe $[82]$	25
2.4	Dissociation constants of β -alanine: •, exp. results this work;	
	, fit this work; \bigtriangledown , May [60]; \triangle , Gillespie [34]; \triangleleft , Dey [28]; \triangleright	
	Majumdar [57]; \Diamond Boyd [13]; \Box , Christensen [18]	26
2.5	Dissociation constants of taurine: •, exp. results this work;,	
	fit this work; ∇ , King [49]	27
2.6	Dissociation constants of sarcosine: •, exp. results this work;,	
	fit this work; ∇ , Datta [21]	28
2.7	Dissociation constants of 6-aminohexanoic acid: •. exp. results	
	this work;, fit this work; \bigtriangledown , Smith [84]; \triangle , Gillespie [34]; \triangleleft ,	
	Brandariz [15]	29
2.8	Dissociation constants of DL-methionine: •, exp. results this	
	work;, fit this work; ∇ , Pelletier [69]	30
2.9	Dissociation constants of glycine: •, exp. results this work;	
	, fit this work; \bigtriangledown , Datta [21]; \triangle , King [48]; \triangleleft , Owen [67]; \triangleright ,	
	Gillespie [34]; \diamond , Clarke [19]; \Box , Izatt [44]	31
2.10	Dissociation constants of L-phenylalanine: •, exp. results this	
	work;, fit this work; ∇ , Izatt [45]	32
2.11	Dissociation constants of L-proline: •, exp. results this work;,	
	fit this work; ∇ , Smith [85]; \triangle , Azab [6]	33
2.12	Dissociation constants of L-glutamic acid: •, exp. results this	
	work;, fit this work; ∇ , Albert [3]; \triangle , Wilson [98]	34
2.13	Dissociation constants of L-aspartic acid: •, exp. results this	
	work;, fit this work; ∇ , Smith [84]; \triangle , Batchelder [7]	35
3.1	Schematic representation of the Taylor dispersion setup	89
3.2	Typical result from a N_2O/H_2O system: -, exp. result; $\cdots \circ \cdots$, fit	92
3.3	Typical result from a $N_2O/(PZ + H_2O)$ system: -, exp. result;	
	$\cdots \circ \cdots$, fit;, N ₂ O response;, PZ response	92
3.4	Diffusion coefficient, D_{methanol} , of methanol in water at 308.15 K	
	as a function of mole fraction, x_{methanol} . •, this work; \triangle , van de	
	Ven-Lucassen et al. [92]; ∇ , Lee & Li [54] \ldots	94

3.5	Infinite dilution diffusion coefficient, $D_{0,\text{methanol}}$, of methanol in water as a function of temperature T . •, this work; Δ , van de Ven-Lucassen et al. [92]: ∇ Lee & Li [54]: ∇ Easteal & Woolf	
	[31]; \triangleleft , Matthews & Akgerman [58] $\ldots \ldots \ldots \ldots $ 95	
3.6	Comparison between the experimental infinitely dilute diffusion coefficient and the estimated value according to the estimation	
	methods applied. \circ , Othmer - Thakar; \triangle , Wilke - Chang; \bigtriangledown ,	
	Hayduk - Minas; \triangleright , Scheibel; \triangleleft , Hayduk - Laudie; \sqcup , modified Wilke - Chang. References are given in Table 3.5 97	
3.7	Stokes-Einstein plot for the diffusion coefficient of PZ in aqueous PZ solutions: $202 K_{\odot} = 202 15 K_{\odot} = 212 15$	
	FZ solutions: •, 293 K; \blacktriangle , 298.15 K; \lor , 303.15 K; \triangleright , 313.15 K; The solid line represents Eq. (3.12) and the dashed lines	
9.0	represents $\pm 10\%$	D
3.8	Comparison between the experimentally determined diffusion coefficients, and the values estimated with the Stokes-Einstein equation, D_{SE} :	$D_{exp},$
0.0	•, PZ; •, MDEA ; The dashed lines represents $\pm 20\%$ 99	
3.9	Experimental results of N ₂ O diffusion in H ₂ O: •, exp. results this work; \bigtriangledown , Davidson & Cullen [23]; \triangle , Duda & Vrentas [29];	
	⊲, Haimour & Sandall [37]; ⊳, Sada et al. [78]; ◊, Joosten &	
	Danckwerts [46]; \Box , Versteeg & Van Swaaij [96]; +, Thomas & Adams [91]; *, Samanta et al. [79] $\ldots \ldots \ldots$	
3.10	Stokes-Einstein plot for D_{N_2O} in aqueous PZ solutions: •, T =	
	293.15 K; \checkmark , 1 = 298.15 K; \blacktriangle , 1 = 303.15 K; \triangleleft , 1 = 313.15 K; \blacktriangleright , T = 323.15 K; \diamondsuit , T = 333.15 K; The solid line represents	
0.11	equation (3.13) and the dashed lines represent $\pm 10\%$ 104	
3.11	comparison of D_{N_2O} to interature sources: •, $T = 303.15$ K present work; \mathbf{V} , $T = 303$ K Sun et. al [88]; \mathbf{A} , $T = 303$ K	
	Samanta et al. [79];, T = 303.15 K modified Stokes-Einstein; T = 212.15 K modified Stokes-Einstein;	
	$^{\circ}$, 1 = 313.15 K present work; $^{\vee}$, 1 = 313 K Sun et al. [88]; △, T = 313 K Samanta et al. [79]; , T = 313.15 K modified	
	Stokes-Einstein	
4.1	Schematic representation of the Taylor dispersion setup $\ldots \ldots 109$	
4.2	Stokes-Einstein plot for D_{N_2O} in aqueous amino acid salt solutions: •, K ⁺ taurine: •, K ⁺ sarcosine: •, K ⁺ L-proline: •, K ⁺ glycine:	
	The solid line represents equation (4.11) with $\alpha = 0.6$ and the	
4.3	dashed lines represents $\pm 10\%$	
	ature values at 293.15 K: •, present work; $\mathbf{\nabla}$, Kumar et al. [52];	
	, modified Stokes-Einstein relation	
5.1	Mass transfer coefficient as a function of reactor liquid level and stirror speed \bullet high liquid level $V_{i} = 2.38 \text{ dm}^3$. \bullet medium	
	liquid level $V_{liq} = 2.17 \text{ dm}^3$; \blacktriangle , low liquid level $V_{liq} = 1.98 \text{ dm}^3$; 120	

List of Tables

2.1	Extrapolated experimental results of the dissociation constants	17
$\frac{2.1}{2.2}$	Coefficients in equation (2.37)	36
2.3	Comparison of correlated values of $ln(K)$ and thermodynamic	00
2.0	properties with literature data for protonated MDEA	37
2.4	Comparison of correlated values of $ln(K_{2})$ and thermodynamic	01
2.1	properties with literature values for β_{-2} and thermodynamic	38
25	Comparison of correlated values of $ln(K_2)$ and thermodynamic	00
2.0	properties with literature values for taurine	39
2.6	Comparison of correlated values of $ln(K_2)$ and thermodynamic	00
2.0	properties with literature values for sarcosine	40
2.7	Comparison of correlated values of $ln(K_2)$ and thermodynamic	10
2	properties with literature values for 6-aminohexanoic acid	41
2.8	Comparison of correlated values of $ln(K_2)$ and thermodynamic	
2.0	properties with literature values for DL-methionine	42
29	Comparison of correlated values of $ln(K_2)$ and thermodynamic	14
2.0	properties with literature values for glycine	43
210	Comparison of correlated values of $ln(K_2)$ and thermodynamic	10
2.10	properties with literature values for L-phenylalanine	44
2.11	Comparison of correlated values of $ln(K_2)$ and thermodynamic	
2.11	properties with literature values for L-proline	45
2.12	Comparison of correlated values of $ln(K_2)$ and thermodynamic	10
2.12	properties with literature values for L-glutamic acid	46
2 13	Comparison of correlated values of $ln(K_2)$ and thermodynamic	10
2.10	properties with literature values for L-aspartic acid	$\overline{47}$
2.14	Comparison of the effect of different counter ions on the deter-	11
2.11	mined dissociation constants of taurine	48
2.15	Comparison of values of the standard state thermodynamic prop-	10
2.10	erties for commercially available absorbents to this work	49
2.16	Parameters for equation (2.44)	51
2.10 2.17	Parameters for equation (2.46)	52
2.18	Parameters for equation (2.48)	53
2.10 2.19	Experimental equilibrium data for MDEA measurements	54
$\frac{2.10}{2.20}$	Experimental equilibrium data for β -alapine measurements	57
2.20 2.21	Experimental equilibrium data for faurine measurements	61
2.21 2.22	Experimental equilibrium data for sarcosine measurements	64
2.22	Experimental equilibrium data for 6-aminohexanoic acid mea-	01
2.20	surements	66
2.24	Experimental equilibrium data for DL-methionine measurements	69
2.24 2.25	Experimental equilibrium data for glycine measurements	72
2.20	Experimental equilibrium data for gryenic measurements	14

2.26	Experimental equilibrium data for L-phenylalanine measurements	76
2.27	Experimental equilibrium data for L-proline measurements	79
2.28	Experimental equilibrium data for L-glutamic acid measurements	82
2.29	Experimental equilibrium data for L-aspartic acid measurements	84
2.30	Experimental equilibrium data for taurine measurements using	
	different counter ions	86
3.1	Dimensions of the experimental setup and flow conditions	89
3.2	Diffusion coefficient, D_{methanol} , of methanol in water at 308.15 K	
	as a function of mole fraction, x_{methanol}	93
3.3	Infinite dilution diffusion coefficient, $D_{0,\text{methanol}}$, of methanol in	
	water as a function of temperature T	93
3.4	Diffusion of PZ in aqueous PZ solutions	96
3.5	Methods to estimate the diffusion coefficient of PZ at infinite	
	dilution in water	97
3.6	Diffusion coefficients of PZ and MDEA in aqueous $(PZ + MDEA)$	
	solutions	101
3.7	Diffusivity of N_2O in H_2O at various temperatures $\ldots \ldots \ldots$	102
3.8	Diffusivity of N ₂ O in aqueous PZ solutions at various tempera-	
	tures and solvent concentrations	103
4.1		110
4.1	Dimensions of the experimental setup and flow conditions	110
4.2	Viscosities of aqueous potassium salts of sarcosine and L-proline	112
4.3	Limiting ionic conductivities estimated diffusivities	112
4.4	Liquid diffusion coefficients in aqueous amino acid salt solutions	110
	at various temperatures and concentrations	113
4.5	Diffusivity of N_2O in aqueous amino acid salt solutions at various	110
	temperatures and solvent concentrations	116
5.1	Dimension of reactor	110
0.1		113

Preface

This document contains the PhD work carried out by Espen Steinseth Hamborg at the University of Twente from January 1st 2005 until December 31st 2007.

The document is divided into the following chapters:

1. Introduction. A general introduction to CO_2 absorption/desorption processes and the relation of this to the present document.

2. Dissociation constants of amino acids used in CO_2 absorption. A description of the technique used to determine dissociation constant for amino acids used in CO_2 absorption and the experimental results.

3. Diffusivities in Aqueous Piperazine and Aqueous Piperazine - MDEA Solutions. A description of the technique used to determine liquid and gas diffusion in aqueous piperazine and aqueous piperazine - MDEA solutions and the experimental results.

4. Diffusivities in Aqueous Amino Acid Salt Solutions. Experimental results of liquid and gas diffusivities in aqueous amino acid salt solutions.

5. Mass transfer in absorption and desorption processes. Description of the work regarding absorption and desorption processes.

Chapter 1

Introduction

As of today, the three following processes are close to commercial operation of CO_2 capture from flue gases [1]

- 1. Post-combustion capture
- 2. Pre-combustion capture
- 3. Oxy-fuel

This document contains information about the use of different absorbents for use in post-combustion capture exclusively. More information about the precombustion capture and oxy-fuel process can be found elsewhere. [1]

1.1 Post-combustion capture

The development of post-combustion capture of CO_2 started in the 1930s with H_2S and CO_2 gas-treating of natural gas. Throughout the years, treating of flue gases have become important due to the increased level of CO_2 (and other greenhouse gases) in the atmosphere. The scientific community generally accepts that these emission lead to global warming and further dangers for the world. [1, 50]

Post-combustion capture are usually operated in the classical absorber/heatexchanger/desorber configuration. [50] An absorbent, usually an amine or a mixture of different amines, are used to chemically capture CO_2 from the flue gas. The performance of a commercial CO_2 capture plant is closely related to the performance of the absorbent, i.e. reactivity, capacity, diffusivity, corrosion, degradation, etc. More detailed information about this is available elsewhere. [50] In recent years the use of amino acid salts as absorbents have gained increasing attention. [51] These type of absorbents have the nature of salts and also several advantages (and disadvantages). The salts are more stable towards oxidative degradation, have lower volatility, and higher surface tension than commercially available amines. The purpose of the work described in this document was to gain better understanding and description of the properties of amino acid salts as absorbents for CO_2 post-combustion capture. In each chapter the results described are discussed in terms of advantages/disadvantages for post-combustion CO_2 capture.

Chapter 2

Dissociation constants of amino acids used in \mathbf{CO}_2 absorption

2.1 Introduction

Aqueous solutions of amines are frequently used for the removal of acid gases, such as CO_2 and H_2S , from a variety of gas streams. In particular, aqueous solutions of alkanolamines and blends of alkanolamines are widely applied in gas treating. [50] It has been widely reported that alkanolamines undergo degradation in oxygen atmosphere, usually encountered in the treatment of flue gases. Aqueous solutions of salts of amino acids might be an attractive alternative to alkanolamines. They have been found to have better resistance to degradation, and their reactivity with CO_2 is comparable to aqueous alkanolamines of related classes. Due to their ionic nature, aqueous solutions of salts of amino acids have negligible volatility and among others also higher surface tension than aqueous solutions of alkanolamines. [42, 70, 53]

The second dissociation constants of β -alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, L-proline and the third dissociation constants of L-glutamic acid and L-aspartic acid have been determined between 293 K to 353 K in this work by means of electromotive force measurements. Parts of the results extend the temperature range of available literature data for the compounds under investigation.

2.2 Procedure

2.2.1 Amino acids

 β -alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, and L-proline dissociate in aqueous solutions according to:

$${}^{-}O_2C - R - NH_3^+ + H_2O \rightleftharpoons {}^{-}O_2C - R - NH_2 + H_3O^+$$
(2.1)

where the protonated amino acid zwitterion is neglected. The equilibrium constant can be determined by electromotive force (EMF) measurements using a combined glass pH electrode. A combined glass pH electrode has two well-known unpleasant properties.

(1) Failure to obey Nernst equation perfectly. This error arises due to the alkaline error and the asymmetry potential, which can vary with the change in the activity of H_3O^+ in the solution under investigation. In strong alkaline solutions, measurement errors may appear due to the potential contribution of alkaline ions (e.g. Na⁺, K⁺, etc.) and the measured activity of H_3O^+ appears to be higher than the actual.

(2) A tendency to drift in potential by millivolts over periods of minutes to days. The standard potential of the electrode is not a constant in time. To overcome the unpleasant properties described above, a combined glass pH electrode can be transferred back and forth between two solutions of different composition while continuously recording the potential. Measurements comparable to the accuracy of a system including the standard hydrogen electrode can be achieved if used with a noise-free voltmeter, proper shielding and surrounding temperature matching of the solutions. The same electrode has to be used in both cells, and the time periode between the two measurements should be as short as possible. [17] The standard potentials of the combined pH electrode are the same as a result of the matching temperature in the two cells. A combined pH electrode and a two cell system was used in order to determine dissociation constants:

$$Ag(s), AgCl(s) \mid 3 \text{ M KCl}(aq) \parallel HCl(aq, \overline{m}_{HCl}) \parallel Glass Electrode$$
(I)

and

Ag(s), AgCl(s) | 3 M KCl(aq) || NaOH(aq,
$$\bar{m}_{NaOH}$$
) ...
 $^{-}O_{2}C$ -R-NH₃⁺ (aq, $\bar{m}_{-O_{2}C-R-NH_{3}^{+}}$) || Glass Electrode (II)

HCl was chosen to be used in cell I as a reference solution. A combined pH electrode can determine the activities of the compounds under investigation with a higher accuracy in an acidic solution, as compared to an alkaline solution as described above. As the activity of a pure solid is set to unity, the Nernst equation for cell I results in:

$$E_{I} = E^{\circ} (T_{I}) - \frac{RT_{I}}{F} \ln \left(a_{H_{3}O^{+}} a_{Cl^{-}} \right)_{I}$$
(2.2)

and for cell II:

$$E_{II} = E^{\circ} (T_{II}) - \frac{RT_{II}}{F} \ln \left(a_{H_3O^+} a_{Cl^-} \right)_{II}$$
(2.3)

As both cells are at the same temperature, $T_I = T_{II}$, they have the same standard potential, $E^{\circ}(T_I) = E^{\circ}(T_{II})$:

$$T_{II} \ln \left(a_{H_3O^+} a_{Cl^-} \right)_{II} = \frac{F \left(E_I - E_{II} \right)}{R} + T_I \ln \left(a_{H_3O^+} a_{Cl^-} \right)_I$$
(2.4)

If exact temperature matching of the cells is achieved, the activity of the inner reference electrolyte of the pH electrode is identical througout the measurements, $(a_{Cl^-})_I = (a_{Cl^-})_{II}$. Hence, equation (2.4) reduces to:

$$\ln (a_{H_3O^+})_{II} = \frac{F (E_I - E_{II})}{RT} + \ln (a_{H_3O^+})_I$$
(2.5)

As HCl is completely dissociated, the dissociation of water can be neglected in cell I. The mass balances for the amino acid, NaOH and water in cell II are:

$$\bar{n}_{-O_2C-R-NH_3^+} = n_{-O_2C-R-NH_3^+} + n_{-O_2C-R-NH_2}$$
(2.6)

$$\bar{n}_{NaOH} = n_{Na^+} \tag{2.7}$$

$$\bar{n}_{H_2O} = n_{H_2O} + n_{H_3O^+} + n_{OH^-} \tag{2.8}$$

Electroneutrality results in:

$$n_{Na^+} + n_{H_3O^+} = n_{-O_2C-R-NH_2} + n_{OH^-}$$
(2.9)

The chemical equilibrium conditions for both reactions present are:

$$K_w(T) = \frac{a_{H_3O} + a_{OH^-}}{a_{H_2O}^2}$$
(2.10)

$$K(T) = \frac{a_{-O_2C-R-NH_2}a_{H_3O^+}}{a_{-O_2C-R-NH_3^+}a_{H_2O}}$$
(2.11)

For a given temperature and composition, the electromotive forces E_I and E_{II} and the temperature in each cell are measured.

Activities of HCl and KCl are estimated using the excess energy model of Pitzer from Holmes [41] and Pabalan [68], respectively. The activity of water follows from the Gibbs-Duhem equation. A very brief outline of the excess energy model of Pitzer used in this work is given in Appendix 2.8. Activities of NaOH and the amino acid in Cell II are approximated using only the modified Debye-Hückel term in Pitzer's equation, i.e. neglecting binary and ternary parameters. The activity coefficient of the zwitterion structure of the amino acid is set to unity for all molalities and temperatures. The influence of pressure on the chemical reactions is neglected, and it is set to 1 bara during further described calculations. The changes in the compositions of the electrolyte cells due to the outflow of KCl electrolyte from the electrode are neglected. The water dissociation constant, $K_W(T)$, is taken from Fisher [33]. With the given information equation (2.4) to equation (2.11) are solved iteratively to yield the 'true' number of moles of each species present in cell II, as well as a preliminary value for the dissociation constant of the amino acid. This dissociation constant is called preliminary because it is calculated out of a set of equations in which for cell II the activities are not exactly known. The experiments are performed at different overall molalities of the amino acid, and the 'true' equilibrium constant of the dissociation of the amino acid is determined in a two-step linear extrapolation procedure:

$$\lim_{\bar{m}_{NaOH,II} = \text{const.}} \left[K_{2,\exp} \left(T, \bar{m}_{-O_2C-R-NH_3^+}, \bar{m}_{NaOH,II} \right) \right] \\ = K_{2,\exp} \left(T, \bar{m}_{NaOH,II} \right)$$
(2.12)

$$\lim_{\bar{m}_{NaOH,II} \to 0} K_{2,\exp}(T, \bar{m}_{NaOH,II}) = K_2(T)$$
(2.13)

However, if $\bar{m}_{NaOH,II}$ is small enough (e.g. $\bar{m}_{NaOH,II} \leq \sim 0.01 \text{ mol/kg}$), the second extrapolation is not necessary.

2.2.2 Dicarboxylic amino acids

L-Glutamic acid and L-aspartic acid dissociates according to:

$${}^{-O_2C-}_{HO_2C-}R_{-NH_3^+} + H_2O \rightleftharpoons {}^{-O_2C-}_{-O_2C-}R_{-NH_3^+} + H_3O^+$$
(2.14)

$${}^{-O_2C-}_{-O_2C-}R_{-NH_3^+} + H_2O \rightleftharpoons {}^{-O_2C-}_{-O_2C-}R_{-NH_2} + H_3O^+$$
(2.15)

Measurements of the dissociation constants of L-glutamic acid and L-aspartic acid were performed in a similar manner as described above. However, equation (2.6) to equation (2.13) had to be adapted to describe the composition in the cell II to:

$$\bar{n}_{\substack{O_2C-\\HO_2C-}R-NH_3^+} = n_{\substack{O_2C-\\-O_2C-}R-NH_3^+} + n_{\substack{O_2C-\\-O_2C-}R-NH_2} + n_{\substack{O_2C-\\-O_2C-}R-NH_2}$$
(2.16)

$$\bar{n}_{NaOH} = n_{Na^+} \tag{2.17}$$

$$\bar{n}_{H_2O} = n_{H_2O} + n_{H_3O^+} + n_{OH^-} \tag{2.18}$$

Electroneutrality results in:

$$n_{Na^+} + n_{H_3O^+} = n_{\stackrel{O_2C^-}{-O_2C^-}R - NH_3^+} + 2n_{\stackrel{O_2C^-}{-O_2C^-}R - NH_2} + n_{OH^-}$$
(2.19)

The chemical equilibrium conditions for both reactions present are:

$$K_w(T) = \frac{a_{H_3O} + a_{OH^-}}{a_{H_2O}^2}$$
(2.20)

$$K(T) = \frac{a_{-O_2C-R-NH_2}a_{H_3O^+}}{a_{-O_2C-R-NH_3}a_{H_2O}}$$
(2.21)

Since between one to two moles of sodium hydroxide have to be added to each initial mole of amino acid in this case, the extrapolation to zero ionic strength is performed according to:

$$\lim_{\substack{\bar{m}_{NaOH,II} \to 0 \\ HO_2C^- R - NH_3^+ \to 0 \\ HO_2C^- R - NH_3^+ \to 0}} \left[K_{3,\exp} \left(T, \bar{m}_{\substack{-O_2C^- \\ HO_2C^- R - NH_3^+ }}, \bar{m}_{NaOH,II} \right) \right] = K_3 \left(T \right)$$
(2.22)

2.2.3 Alkanolamines

Measurements of the dissociation constant of protonated methyldiethanolamine (MDEA) were performed in order to validate the experimental setup. Protonated MDEA dissociates according to:

$$MDEAH^+ + H_2O \rightleftharpoons MDEA + H_3O^+ \tag{2.23}$$

However, HCl was used in cell II instead of NaOH, and consequently equation (2.6) to equation (2.13) were adapted to describe the composition of the cells:

$$\bar{n}_{MDEA} = n_{MDEA} + n_{MDEAH^+} \tag{2.24}$$

$$\bar{n}_{HCl} = n_{Cl} \tag{2.25}$$

$$\bar{n}_{H_2O} = n_{H_2O} + n_{H_3O^+} + n_{OH^-} \tag{2.26}$$

Electroneutrality results in:

$$n_{MDEAH^+} + n_{H_3O^+} = n_{Cl^-} + n_{OH^-} \tag{2.27}$$

The chemical equilibrium conditions for both reactions present are:

$$K_w(T) = \frac{a_{H_3O^+}a_{OH^-}}{a_{H_2O}^2}$$
(2.28)

$$K(T) = \frac{a_{MDEA}a_{H_3O^+}}{a_{MDEAH^+}a_{H_2O}}$$
(2.29)

The linear extrapolation to zero MDEA and HCl molalities were done as in equation (2.12) and (2.13):

$$\lim_{\bar{m}_{HCl,II}=\text{const.}} [K_{1,\exp}(T, \bar{m}_{MDEA}, \bar{m}_{HCl,II})] = K_{1,\exp}(T, \bar{m}_{HCl,II}) \quad (2.30)$$

 $\bar{m}_{MDEA}{\rightarrow}0$

$$\lim_{\bar{m}_{HCl,II} \to 0} K_{1,\exp}(T, \bar{m}_{HCl,II}) = K_1(T)$$
(2.31)

2.3 Thermodynamic relations

To the experimentally determined dissociation constants, the well-known thermodynamic relations are applied:

$$\Delta_r G_m = -RT \ln K \tag{2.32}$$

$$\Delta_r H_m = -R \frac{d\ln K}{d(1/T)} \tag{2.33}$$

$$\Delta_r S_m = \frac{(\Delta_r H_m - \Delta_r G_m)}{T} \tag{2.34}$$

$$\Delta_r C_{P,m} = \frac{d\Delta_r H_m}{dT} \tag{2.35}$$

and the change of standard state properties $(T = T^{\circ} = 298.15 \text{ K})$ for the dissociation of an amino acid in water are calculated from equation (2.32) to equation (2.35).

2.4 Experimental

For the EMF measurements a pH voltmeter (Metrohm 780) with a resolution of 0.1 mV and 0.1 K was used, together with a combined pH glass electrode (Metrohm 6.0258.010) with a 3 M KCl (Metrohm 6.2308.020) inner reference electrolyte and an integrated Pt1000 temperature sensor. When not in use, the electrode was stored in a storage solution (Metrohm 6.2323.000). Before each measurement, the electrode was carefully rinsed with distilled water and dried with paper tissue. The cells were completely filled with the electrolyte solutions and placed in a temperature controlled water bath. The cells were sealed between each measurement. The experiments were performed under nitrogen atmosphere inside a glove box to prevent CO_2 from air absorbing into the electrolyte solutions. During each measurement the electromotive force (E) and the temperature in the cell (T) were recorded.

Measurements were performed from 293 K to 353 K at 10 K intervals and at 298.15 K. The overall molality of HCl in cell I and in cell II were held constant $(\bar{m}_{HCl,I} \approx \bar{m}_{HCl,II} \approx 0.01 \text{ mol/kg})$ during measurements of the dissociation constants of protonated MDEA. The overall molality of MDEA was between 0.0455 mol/kg and 0.9033 mol/kg. During measurements of β -alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine and L-proline, the overall molality of HCl in cell I and NaOH in cell II were held constant in all solutions ($\bar{m}_{HCl,I} \approx \bar{m}_{NaOH,II} \approx 0.01 \text{ mol/kg}$) and the overall molality of the amino acids were between 0.0121 mol/kg and 0.8823 mol/kg. During measurements of L-glutamic and L-aspartic acid, the molality of the amino acids were between 0.0644 mol/kg, and the molality of sodium hydroxide was approximately 1.5 times of the amino acid. The overall molality of HCl in cell I was held constant ($\bar{m}_{HCl,I} \approx 0.01 \text{ mol/kg}$). Measurements where the temperature in cell I and in cell II deviated by more than ± 0.1 K were not considered in the described calculations.

2.5 Chemicals

MDEA, β -Alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, L-proline, L-glutamic acid, L-aspartic acid, (Sigma-Aldrich) and NaOH and HCl (Merck) were used as supplied. NaOH and HCl were provided as 0.1 M standard solutions, and were diluted to the desired molalities and checked by means of titration. Water was demineralised and further purified by vacuum distillation.

2.6 Results and discussion

Experimental results at averaged temperatures for the dissociation constants of protonated MDEA, the second dissociation constants of β -alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, Lproline, and the third dissociation constants of L-glutamic acid and L-aspartic acid are given in Table 2.1 with experimental uncertainties. The experimental uncertainties are due to inaccuracies in E_I and E_{II} of ± 0.5 mV. The results are also given with the average and maximum relative deviation between the experimental data and the values from the linear fit. These numbers provides insight of the accuracy of the linear extrapolation. The EMF measurement data are tabulated in Appendix 2.9 with corresponding 'Run no.'.

In Figure 2.1, $ln(K_{2,exp})$ is plotted as function of the dimensionless overall molality of β -alanine according to equation (2.12) and equation (2.13). The extrapolations to zero amino acid molality were done by linear regression for MDEA, β -alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine and L-proline. The intercept at zero amino acid molality is $ln(K_{2,exp})$, and $ln(K_{exp})$ for the case of MDEA. In Figure 2.2 $ln(K_3)$ of L-glutamic acid is plotted against the ionic strength of the solutions under investigation according to equation (2.22). The intercept at zero ionic strength is $ln(K_3)$. Figure 2.3 to Figure 2.13 shows the dissociation constants of protonated MDEA, the second dissociation constants of β -alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, L-proline and the third dissociation constants of L-glutamic acid and L-aspartic acid in comparison to literature values. [2, 65, 47, 56, 82, 60, 34, 28, 57, 13, 18, 49, 21, 84, 15, 69, 48, 67, 19, 44, 45, 85, 6, 3, 98, 7] Literature dissociation constants that are based on the molarity scale [65, 56, 82, 34, 28, 57, 44, 6, 3, 98] were converted to the molality scale by:

$$K = \frac{1}{\rho_W} \left(\frac{c^\circ}{m^\circ}\right) K_c \tag{2.36}$$

where ρ_W is the mass density of pure water taken from Saul [80], and K_c is the dissociation constant based on the molarity scale.

The results for protonated MDEA (i = 0), β -alanine, taurine, sarcosine, 6aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, L-proline (i = 2), L-aspartic acid and L-glutamic acid (i = 3) are correlated [32] by:

$$\ln K_i = \frac{A}{T} + B + C\ln(T) \tag{2.37}$$

The coefficients A, B, and C in equation (2.37) are given in Table 2.2, together with the average and maximum relative deviations between the values of the experimental determined dissociation constants and the fitted values.

In Table 2.3 to Table 2.13 correlated experimental results of the dissociation constants and the values of the standard state thermodynamic properties, given by equation (2.32) to equation (2.35), are given and compared to available literature values.

Run no.	Т	$\ln(K)$	Avg. rel. dev.	Max. rel. dev.			
[-]	[K]	[-]	[%]	[%]			
The dissociation constants of protonated MDEA							
1	293.28	-19.92 ± 0.04	0.038	0.084			
2	293.32	-19.93 ± 0.05	0.030	0.069			
3	293.44	-19.95 ± 0.04	0.018	0.040			
4	298.65	-19.68 ± 0.04	0.026	0.059			
5	298.67	-19.69 ± 0.04	0.035	0.087			
6	298.73	-19.70 ± 0.04	0.015	0.029			
7	303.46	$\textbf{-19.45}\pm0.04$	0.036	0.088			
8	303.48	$\textbf{-19.46} \pm 0.04$	0.017	0.056			
9	313.44	$\textbf{-19.06} \pm 0.04$	0.023	0.040			
10	313.54	$\textbf{-19.02}\pm0.04$	0.032	0.050			
11	313.56	$\textbf{-19.05}\pm0.04$	0.010	0.023			
12	322.83	-18.58 ± 0.04	0.023	0.041			
13	322.84	-18.59 ± 0.04	0.022	0.038			
14	333.23	-18.15 ± 0.04	0.023	0.041			
15	333.26	-18.14 ± 0.04	0.023	0.056			
16	333.34	-18.16 ± 0.04	0.019	0.051			
17	343.16	-17.78 ± 0.04	0.049	0.087			
18	343.22	-17.76 ± 0.04	0.022	0.041			
19	353.17	-17.38 ± 0.03	0.040	0.085			
20	353.26	-17.39 ± 0.04	0.043	0.090			
	The seco	ond dissociation	constants of β -al	anine			
1	293.13	-24.10 ± 0.04	0.017	0.037			
2	293.16	-24.11 ± 0.04	0.013	0.029			
3	293.21	-24.11 ± 0.04	0.025	0.053			
4	298.18	-23.78 ± 0.04	0.015	0.025			
5	298.28	-23.77 ± 0.04	0.020	0.035			
6	298.32	-23.77 ± 0.04	0.018	0.048			
7	303.06	-23.47 ± 0.04	0.061	0.127			
8	303.20	-23.46 ± 0.04	0.023	0.043			
9	303.21	-23.47 ± 0.04	0.060	0.098			
10	313.10	-22.88 ± 0.04	0.018	0.042			
11	313.26	-22.88 ± 0.04	0.014	0.028			
12	313.32	-22.88 ± 0.04	0.027	0.056			
13	323.04	-22.34 ± 0.04	0.018	0.033			
14	323.13	-22.33 ± 0.04	0.021	0.040			
15	323.15	-22.34 ± 0.04	0.036	0.064			
16	332.81	-21.83 ± 0.04	0.032	0.096			
17	332.85	-21.82 ± 0.04	0.029	0.056			

Table 2.1: Extrapolated experimental results of the dissociation constants

	C	•	
continued	from	previous	pag

continued from previous page					
Run no.	T	$\ln(K)$	Avg. rel. dev.	Max. rel. dev.	
[-]	[K]	[-]	[%]	[%]	
18	332.94	-21.79 ± 0.04	0.032	0.074	
19	343.39	-21.32 ± 0.04	0.027	0.055	
20	343.66	-21.31 ± 0.04	0.057	0.104	
21	343.72	-21.30 ± 0.04	0.018	0.020	
22	353.74	-20.83 ± 0.03	0.024	0.046	
23	353.87	-20.82 ± 0.04	0.058	0.092	
24	353.94	-20.82 ± 0.04	0.039	0.059	
	The sec	cond dissociation	n constants of tau	irine	
1	293.22	-21.18 ± 0.04	0.016	0.026	
2	293.64	-21.12 ± 0.04	0.048	0.094	
3	293.65	-21.11 ± 0.04	0.028	0.059	
4	298.47	-20.83 ± 0.04	0.056	0.088	
5	298.55	-20.84 ± 0.04	0.042	0.061	
6	303.12	-20.56 ± 0.04	0.027	0.039	
7	303.45	-20.56 ± 0.04	0.036	0.060	
8	313.13	-20.05 ± 0.04	0.037	0.073	
9	313.14	-20.05 ± 0.04	0.034	0.046	
10	323.39	-19.58 ± 0.04	0.025	0.058	
11	323.55	-19.57 ± 0.04	0.036	0.077	
12	333.22	-19.10 ± 0.04	0.023	0.030	
13	333.24	-19.12 ± 0.04	0.048	0.107	
14	333.24	-19.11 ± 0.04	0.039	0.082	
15	343.16	-18.69 ± 0.04	0.050	0.088	
16	349.86	-18.42 ± 0.04	0.064	0.155	
17	352.24	-18.32 ± 0.03	0.116	0.212	
18	352.29	-18.32 ± 0.03	0.058	0.133	
19	353.82	-18.24 ± 0.03	0.018	0.033	
	The sec	and dissociation	constants of sare	rosine	
1	293 66	-23.76 ± 0.04	0.028	0.048	
2	293.74	-23.76 ± 0.04	0.022	0.054	
-3	298.51	-23.48 ± 0.04	0.007	0.011	
4	298.64	-23.47 ± 0.04	0.019	0.045	
5	303.47	-23.23 ± 0.04	0.011	0.028	
6	303.69	-23.21 ± 0.04	0.022	0.040	
7	313.58	-22.71 ± 0.04	0.019	0.039	
8	313.62	-22.72 ± 0.04	0.028	0.063	
$\tilde{9}$	323.57	-22.25 ± 0.04	0.042	0.071	
10	323.68	-22.25 ± 0.04	0.010	0.031	
11	333.23	-21.82 ± 0.04	0.025	0.040	
$1\overline{2}$	333.45	-21.82 ± 0.04	0.030	0.047	
13	343.04	-21.41 ± 0.04	0.035	0.066	
14	343.09	-21.42 ± 0.04	0.017	0.029	

continued from previous page

Run no.	T	$\ln(K)$	Avg. rel. dev.	Max. rel. dev.
[-]	[K]	[-]	[%]	[%]
15	350.58	-21.11 ± 0.04	0.072	0.137
16	350.58	$\textbf{-}21.11\pm0.04$	0.045	0.119
The s	second dis	ssociation consta	ants of 6-aminohe	exanoic acid
1	293.82	-25.55 ± 0.04	0.015	0.025
2	293.83	-25.54 ± 0.04	0.012	0.025
3	293.87	-25.54 ± 0.04	0.028	0.036
4	298.64	-25.19 ± 0.04	0.014	0.026
5	298.69	-25.17 ± 0.04	0.011	0.028
6	298.73	-25.17 ± 0.04	0.028	0.040
7	303.59	-24.81 ± 0.04	0.017	0.035
8	303.64	-24.80 ± 0.04	0.015	0.034
9	303.65	-24.79 ± 0.04	0.023	0.053
10	313.08	-24.12 ± 0.04	0.040	0.085
11	313.27	-24.10 ± 0.04	0.027	0.049
12	313.32	-24.10 ± 0.04	0.043	0.088
13	322.46	-23.48 ± 0.04	0.031	0.071
14	322.49	-23.48 ± 0.04	0.040	0.079
15	322.74	-23.47 ± 0.04	0.019	0.051
16	334.14	-22.74 ± 0.04	0.027	0.055
17	334.15	-22.74 ± 0.04	0.051	0.102
18	343.83	-22.13 ± 0.04	0.068	0.149
19	343.80	-22.12 ± 0.04	0.066	0.152
20	353.10	-21.59 ± 0.04	0.029	0.051
21	333.24	-21.04 ± 0.04	0.003	0.113
т	ha sacand	dissociation ex	nationta of DI ma	thioning
1	202 27	21.70 ± 0.04	0 066	0.122
1	293.37	-21.70 ± 0.04 21.70 ± 0.04	0.000	0.132 0.147
2	290.41 203 52	-21.70 ± 0.04 21.68 ± 0.04	0.000	0.147 0.117
1	290.02 208 35	-21.00 ± 0.04 -21.41 ± 0.04	0.035 0.075	0.000
5	230.00 298.44	-21.41 ± 0.04 -21.38 ± 0.04	0.075	0.033
6	298.58	-21.00 ± 0.04 -21.40 ± 0.04	0.045	0.000
7	$303\ 20$	-21.10 ± 0.01 -21.13 ± 0.04	0.071	0.139
8	303.29	-21.13 ± 0.01 -21.13 ± 0.04	0.067	0.149
9	303.32	-21.14 ± 0.04	0.067	0.096
10	312.97	-20.61 ± 0.04	0.063	0.151
11	312.98	-20.61 ± 0.04	0.067	0.137
12^{-1}	313.06	-20.61 ± 0.04	0.080	0.158
13^{-}	323.29	-20.08 ± 0.04	0.085	0.158
14	323.53	-20.07 ± 0.04	0.085	0.189
15	323.53	-20.08 ± 0.04	0.087	0.196
16	333.34	-19.59 ± 0.04	0.064	0.138
17	333.38	$\textbf{-19.60}\pm0.04$	0.072	0.158

continued from p	previous page
------------------	---------------

$\frac{1}{2} \frac{1}{2} \frac{1}$					
Run no.		$\ln(K)$	Avg. rel. dev.	Max. rel. dev. $[071]$	
[-]	[K]	[-]	[%]	[%]	
18	333.44	-19.60 ± 0.04	0.054	0.133	
19	343.13	-19.17 ± 0.04	0.051	0.118	
20	343.17	-19.16 ± 0.04	0.084	0.206	
21	343.23	-19.18 ± 0.04	0.042	0.092	
22	353.30	-18.77 ± 0.03	0.034	0.053	
23	353.30	-18.80 ± 0.04	0.062	0.139	
24	353.32	-18.81 ± 0.03	0.050	0.102	
	T)	1 1			
-	The se	cond dissociation	n constants of gly	vcine	
1	293.07	-22.86 ± 0.04	0.010	0.179	
2	293.08	-22.80 ± 0.04	0.055	0.158	
3	293.09	-22.85 ± 0.04	0.025	0.055	
4	298.25	-22.49 ± 0.04	0.023	0.058	
5	298.25	-22.48 ± 0.04	0.038	0.067	
6	298.27	-22.44 ± 0.04	0.024	0.043	
7	302.96	-22.19 ± 0.04	0.026	0.056	
8	303.02	-22.20 ± 0.04	0.030	0.076	
9	303.13	-22.22 ± 0.04	0.029	0.068	
10	312.97	-21.71 ± 0.04	0.017	0.028	
11	312.97	-21.66 ± 0.04	0.025	0.047	
12	312.99	-21.69 ± 0.04	0.079	0.117	
13	322.95	-21.17 ± 0.04	0.016	0.035	
14	323.00	-21.16 ± 0.04	0.014	0.032	
15	323.11	-21.17 ± 0.04	0.023	0.038	
16	333.23	-20.69 ± 0.04	0.033	0.062	
17	333.25	-20.68 ± 0.04	0.026	0.044	
18	333.31	-20.69 ± 0.04	0.024	0.055	
19	343.10	-20.27 ± 0.04	0.007	0.013	
20	343.16	-20.22 ± 0.04	0.043	0.086	
21	343.18	-20.26 ± 0.04	0.046	0.082	
22	353.58	-19.82 ± 0.03	0.029	0.064	
23	353.65	-19.84 ± 0.03	0.025	0.036	
24	353.75	-19.82 ± 0.04	0.037	0.091	
Tl	ne second	dissociation cor	stants of L-phen	ylalanine	
1	292.83	-21.69 ± 0.04	0.056	0.137	
2	293.21	-21.66 ± 0.04	0.083	0.201	
3	298.07	-21.43 ± 0.04	0.077	0.166	
4	298.26	-21.38 ± 0.04	0.049	0.096	
5	298.42	-21.39 ± 0.04	0.111	0.173	
6	302.88	$\textbf{-}21.16\pm0.04$	0.090	0.175	
7	302.95	$\textbf{-}21.12\pm0.04$	0.029	0.049	
8	303.12	-21.13 ± 0.04	0.157	0.265	

0.247

 $\textbf{-}20.58\pm0.04$

0.137

302.95 303.12 312.99

9

continued from previous page

Run no.	T	$\ln(K)$	Avg. rel. dev.	Max. rel. dev.			
[-]	[K]	[-]	[%]	[%]			
10	313.06	-20.61 ± 0.04	0.073	0.161			
11	313.11	-20.59 ± 0.04	0.045	0.105			
12	322.79	-20.08 ± 0.04	0.133	0.234			
13	322.85	-20.12 ± 0.04	0.070	0.153			
14	322.92	-20.09 ± 0.04	0.058	0.117			
15	332.79	-19.60 ± 0.04	0.116	0.239			
16	332.95	-19.68 ± 0.04	0.069	0.115			
17	333.05	-19.62 ± 0.04	0.068	0.146			
18	342.99	-19.14 ± 0.04	0.127	0.246			
19	343.02	-19.17 ± 0.03	0.023	0.039			
20	343.16	-19.19 ± 0.04	0.051	0.101			
21	353.12	-18.78 ± 0.04	0.054	0.105			
22	353.20	-18.75 ± 0.03	0.100	0.189			
23	353.29	-18.78 ± 0.03	0.072	0.147			
	The second dissociation constants of L-proline						
1	292.66	-25.08 ± 0.04	0.049	0.095			
2	292.81	-25.08 ± 0.04	0.063	0.193			
3	292.91	-25.08 ± 0.04	0.073	0.172			
4	298.06	-24.78 ± 0.04	0.084	0.230			
5	298.13	-24.78 ± 0.04	0.069	0.162			
6	298.20	-24.77 ± 0.04	0.051	0.127			
7	303.14	-24.52 ± 0.04	0.082	0.186			
8	303.23	-24.50 ± 0.04	0.114	0.267			
9	303.29	-24.48 ± 0.04	0.039	0.075			
10	313.14	-23.97 ± 0.04	0.129	0.294			
11	313.20	-23.93 ± 0.04	0.143	0.313			
12	313.36	-23.94 ± 0.04	0.021	0.051			
13	323.03	-23.47 ± 0.04	0.059	0.163			
14	323.06	-23.45 ± 0.04	0.099	0.300			
15	323.07	-23.45 ± 0.04	0.090	0.266			
16	333.24	-22.99 ± 0.04	0.097	0.200			
17	333.27	-22.97 ± 0.04	0.124	0.377			
18	333.31	-22.98 ± 0.04	0.110	0.335			
19	343.69	-22.47 ± 0.04	0.150	0.453			
20	343.74	-22.48 ± 0.04	0.168	0.508			
$\frac{1}{21}$	354.12	-22.03 ± 0.04	0.237	0.691			
$\frac{1}{22}$	354.35	-22.00 ± 0.04	0.229	0.583			
Л	The third dissociation constants of L-glutamic acid						
1	293.02	-23.22 ± 0.04	0.343	0.680			
2	293.04	-23.22 ± 0.04	0.258	0.569			
-3	298.14	-22.96 ± 0.04	0.329	0.640			
4	298.15	-22.93 ± 0.04	0.380	0.565			

continued from previous page

13

14

15

16

17

18

323.23

323.25

333.15

333.25

342.38

353.23

 -22.14 ± 0.08

 -22.15 ± 0.07

 -21.62 ± 0.06

 -21.63 ± 0.06

 -21.30 ± 0.05

 $-20.91\,\pm\,0.05$

Run no.	T	$\ln(K)$	Avg. rel. dev.	Max. rel. dev.		
[-]	[K]	[-]	[%]	[%]		
5	298.22	-22.98 ± 0.04	0.265	0.582		
6	303.12	-22.68 ± 0.04	0.367	0.623		
7	303.14	-22.70 ± 0.04	0.300	0.668		
8	312.95	-22.23 ± 0.04	0.335	0.592		
9	312.97	-22.27 ± 0.04	0.293	0.595		
10	313.12	-22.27 ± 0.04	0.287	0.617		
11	323.34	-21.80 ± 0.04	0.315	0.533		
12	323.35	-21.81 ± 0.04	0.234	0.491		
13	333.15	-21.42 ± 0.04	0.236	0.415		
14	343.29	-21.07 ± 0.04	0.180	0.318		
15	343.45	-21.06 ± 0.04	0.199	0.365		
16	353.23	-20.73 ± 0.04	0.271	0.562		
17	353.25	-20.74 ± 0.04	0.230	0.446		
1	1 ne third	dissociation con	stants of L-aspar	tic acid		
1	293.24	-23.70 ± 0.00	0.720	1.017		
2	293.64	-23.72 ± 0.08	0.220	0.343		
3	298.05	-23.40 ± 0.07	0.196	0.427		
4	298.05	-23.37 ± 0.05	0.115	0.171		
5	298.13	-23.38 ± 0.08	0.303	0.606		
6	303.03	-23.06 ± 0.06	0.294	0.624		
7	303.04	-23.12 ± 0.05	0.101	0.175		
8	303.12	-23.12 ± 0.08	0.326	0.624		
9	312.97	-22.70 ± 0.05	0.106	0.238		
10	313.01	-22.62 ± 0.06	0.265	0.573		
11	313.03	-22.61 ± 0.07	0.309	0.664		
12	323.16	-22.22 ± 0.05	0.130	0.277		

Experimental results for the dissociation constants of protonated MDEA have been reported by several investigators, Kamps [2], Oscarson [65], Kim [47], Littel [56] and Schwabe [82]. The results are given in Table 2.3 and the correlated values from this work agree well with the results by Kamps [2] and Oscarson [65], with an average relative deviation (in $\ln(K)$) of 0.01% and 0.03%, respectively. The values extrapolated to higher temperatures are within 0.08% and 0.21% of the results by Kamps [2] and Oscarson [65], respectively. The results by Kim [47], Littel [56] and Schwabe [82] are within 0.46%, 1.76% and 0.58%, respectively. The values of $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$ agree well with the literature values. The largest relative deviation in $\Delta_r G_m^{\circ}$ are from those of Schwabe [82] with 0.58%, and in $\Delta_r H_m^{\circ}$ from those of Kamps [2] with 2.65%. As expected, the largest relative deviation are in $\Delta_r S_m^{\circ}$ and $\Delta_r C_{P,m}^{\circ}$.

0.323

0.301

0.238

0.481

0.225

0.337

0.682

0.626

0.399

0.807

0.403

0.622

The correlated values for the second dissociation constants of β -alanine are

Figure 2.1: Influence of the dimensionless overall molality of β -alanine on $\ln(K_{2,exp})$: •, experimental values; ----, linear regression

in best agreement with the results by Boyd [13], with an average relative deviation (in $\ln(K_2)$) of 0.31%. The results by May [60], Gillespie [34], Dey [28] and Majumdar [57] deviates with 0.87%, 1.24%, 1.49% and 1.10%, respectively. The differences between the correlated values of this work and the litterature values for β -alanine are larger than those for protonated MDEA. May [60] did not take the activity coefficients of the chemical compound into account while calculating the second dissociation constants from the experimental data, and set the activity coefficients to unity for all species. If the activity coefficients are set to unity in this work, the correlated values from this work have an average relative deviation of 0.04% compared to May [60]. The results by Gillespie [34] differ with an average relative deviation of 1.24% from the correlated values of this work. Gillespie [34] determined $\Delta_r H_m^{\circ}$ experimentally by flow calorimetry and used a temperature specific value for $\ln(K_2)$ in order to derive values of $\ln(K_2)$ from the calorimetric data. By doing so, the accuracy of the results from the calorimetric data will follow the accuracy of the temperature specific value used. Gillespie [34] chose a temperature specific value from Christensen [18]. Christensen [18] fairly described the estimation of the activity coefficients by a succesive approximation of governing equations, and consequently it is difficult to explain the differences between the results of Gillespie [34] and Christensen [18] to the results of this work. In the work of Dey [28] and Majumdar [57] the activity coefficients are set to unity for all compounds. By applying this to this work, the determined second dissociation constants differ with 0.55% and 0.17%, respectively. Boyd [13] estimated the activity coefficients of the chemical com-

Figure 2.2: Influence of the ionic strength on $\ln(K_3)$ of L-glutamic acid: •, experimental values; ----, linear regression

pound using the Davies equation [24], a form the Debye-Hückel equation. By applying the Davis equation to this work, the correlated results have a relative average deviation of 0.19% compared Boyd [13]. Values for the thermodynamic properties of β -alanine are given by May [60], Gillespie [34] and Boyd [13]. The results by Boyd [13] are in the best agreement with the results from this work, with a deviation of 0.30% and 0.21% in $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$, respectively. The values of $\Delta_r S_m^{\circ}$ and $\Delta_r C_{P,m}^{\circ}$ have a larger relative difference.

Experimental values for the second dissociation constants of taurine are reported by King [49]. Correlated values from this work are in agreement with the results by King [49] with an average relative deviation (in $\ln(K_2)$) of 0.02%. The thermodynamic values are also in agreement, with a relative deviation of 0.10% and 0.72% in $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$, respectively, whereas $\Delta_r S_m^{\circ}$ and $\Delta_r C_{P,m}^{\circ}$ have larger relative difference.

Values for the second dissociation constants of sarcosine are reported by Datta [21]. The correlated values have an average relative deviation of 0.06% from the results by Datta [21]. Values of $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$ given by Datta [22], have a relative deviation of 0.09% and 2.02% from the values of this work. The relative differences in $\Delta_r S_m^{\circ}$ and $\Delta_r C_{P,m}^{\circ}$ are larger.

Smith [84], Gillespie [34] and Brandariz [15] reported values for the second dissociation constants of 6-aminohexanoic acid, and the values deviates with 1.29%, 1.32% and 0.36% (in $\ln(K_2)$) from this work. In the work of Smith [84], the activity coefficients for the amino acid are not estimated, and set to unity. By applying this assumption to the present work, the average relative

Figure 2.3: Dissociation constants of protonated MDEA: •, exp. results this work; ----, fit this work; \bigtriangledown , Kamps [2]; \triangle , Oscarson [65]; \triangleleft , Kim [47]; \triangleright , Littel [56]; \Diamond , Schwabe [82]

deviation is 0.43%. Gillespie [34] measured $\Delta_r H_m^{\circ}$ by flow calorimetry, and used a temperature specific value of the dissociation constant from Smith [84]. With acitvity coefficients set to unity in this work, the relative difference is 0.12%. The relative difference between this work and the work of Brandariz [15] is 0.36%. Smith [84] reported values for $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$, and the values have a relative deviation of 1.24% and 0.53% from this work, respectively. The relative differences in $\Delta_r S_m^{\circ}$ are larger.

Values for the second dissociation constants of DL-methionine are reported by Pelletier [69]. The results have an average relative deviation of 0.15 % (in $\ln(K_2)$) from the correlated values of this work. The values of $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$ have a relative deviation of 0.64% and 0.23%, respectively, and the deviations in $\Delta_r S_m^{\circ}$ are larger.

Values for the second dissociation constants of glycine have been reported by several investigators, Datta [21], King [48], Owen [67], Gillespie [34], Clarke [19] and Izatt [44]. The results by the authors have a relative deviation (in $\ln(K_2)$) of 0.04%, 0.05%, 0.04%, 0.09%, 3.40% and 0.08% from this work, respectively. Datta [22] and King [48] reported values with a relative deviation of 0.05% and 0.13% in $\Delta_r G_m^{\circ}$ and 0.45% and 0.45% in $\Delta_r H_m^{\circ}$, respectively. Owen [67] and Izatt [44] also reported values for $\Delta_r H_m^{\circ}$ with relative deviations of 2.95% and 0.11%. The relative deviation in the values of $\Delta_r S_m^{\circ}$ and $\Delta_r C_{P,m}^{\circ}$ reported by the authors are larger.

Izatt [45] reported values for the second dissociation constants of L-phenylalanine,

Figure 2.4: Dissociation constants of β -alanine: •, exp. results this work; ----, fit this work; \bigtriangledown , May [60]; \triangle , Gillespie [34]; \triangleleft , Dey [28]; \triangleright Majumdar [57]; \Diamond Boyd [13]; \Box , Christensen [18]

and the results deviates (in $\ln(K_2)$) with an average of 0.33% from the correlated values of this work. $\Delta_r H_m^{\circ}$ from Izatt [45] deviates with 2.6% from this work, and the relative deviations in $\Delta_r S_m^{\circ}$ are larger.

Values for the second dissociation constants of L-proline are reported by Smith [85] and Azab [6], and the values have an average relative deviation of 1.04% and 1.29% (in $\ln(K_2)$) from the correlated values of this work. In the work of Smith [85], the activity coefficients for each compound were set to unity. By applying so to this work, the values by Smith [85] have an average relative deviation of 0.15%. The values of $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$ from Smith [85] have a relative deviation of 1.07% and 3.85%, whereas the value of $\Delta_r S_m^{\circ}$ from Smith [85] has a larger relative deviation.

Values for the third dissociation constants of L-glutamic acid have been reported by Albert [3] and Wilson [98] at 293.15 K and 298.15 K, and the results deviates with 1.59% and 0.31% (in $\ln(K_3)$) from the correlated results of this work. Albert [3] used a titration technique to determine the third dissociation constants without taking activity coefficients into consideration. However, the large relative deviation from this work can not be explained. In addition to the potentiometrically determined result at 298.15 K, Wilson [98] also carried out measurements of the third dissociation constants at elevated temperatures using a kinetic approach. Those results contains large uncertainties and are not compared to the results from this work.

Smith [84] and Batchelder [7] reported values for the third dissociation con-

Figure 2.5: Dissociation constants of taurine: •, exp. results this work; ----, fit this work; \bigtriangledown , King [49]

stants of L-aspartic acid, and the results by these authors have a relative deviation of 1.49% and 3.16% (in $\ln(K_3)$), respectively, from the correlated results of this work. Smith [84] used the Debye-Hückel term, $\log(\gamma^{(m)}) = -A_{\phi}z_i^2\sqrt{I_m}$, to estimated the activity coefficients of the chemical compounds. By applying the term to the present work, the results by Smith [84] deviates with 1.08%. Batchelder [7] also used a version of the Debye-Hückel term to estimate the activity coefficients. Even though the estimation of the activity coefficients differs from the term used in this work, the large deviation can not be explained. Values of the thermodynamic properties for the third dissociation are reported by Smith [84], and the relative deviation from this work in $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$ are 1.48% and 8.25%, whereas the relative deviation in $\Delta_r S_m^{\circ}$ is larger.

The results of the second and third dissociation constants in this work are in agreement with the above listed literature values. As shown, the value of the activity coefficients for the chemical compounds in the solutions under investigation have an influence on the final results. The results are in most cases in literature extrapolated to zero ionic strength after measurements at different ionic strength. The measurement at the lowest ionic strength are usually carried out at $I_m \approx 0.01 \text{ mol/kg}$. A 1-1 salt with the molality of 0.01 mol/kg at 298.15 K and 1 bar has already an activity coefficient equal to 0.897 according to the modified Debye-Hückel term. Accurate estimations of the activity coefficients are important in order to achieve accurate results of the dissociation constants.

During the experiments described above, NaOH is used to deprotonate the amino acid and forming an amino acid salt. KOH and LiOH have also been

Figure 2.6: Dissociation constants of sarcosine: •, exp. results this work; ----, fit this work; \bigtriangledown , Datta [21]

used to form an amino acid salt in order to see the effect on the determined dissociation constants by having different counter ions. The second dissociation constants of taurine were determined at 293.15 K, 323.15 K and 353.15 K using the three different counter ions. The results with potassium and lithium as counter ions are compared in Table 2.14 to the correlated results given above. It shows that the results are all within the experimental errors, and there is no significant effect using the different counter ions. The experimental equilibrium data are given in Appendix 2.9. According to electrolyte thermodynamics, activity coefficients are only dependent on the ionic strength in dilute solutions (e.g. $I_m \leq \sim 0.01 \text{ mol/kg}$), and not on individual ionic molalities or other solute properties. [72] Since the ionic strength of the solutions under investigation here are low (e.g. $\bar{m}_{Na^+, K^+, Li^+} \leq \sim 0.01 \text{ mol/kg}$), it can be concluded that the type of counter ion does not affect the determined dissociation constants. However, if measurements were to be done at higher ionic strength, the type of counter ion would most likely have an effect on the determined dissociation constants.

Figure 2.7: Dissociation constants of 6-aminohexanoic acid: •, exp. results this work; ----, fit this work; \bigtriangledown , Smith [84]; \triangle , Gillespie [34]; \triangleleft , Brandariz [15]

Figure 2.8: Dissociation constants of DL-methionine: $\bullet,$ exp. results this work; ----, fit this work; $\bigtriangledown,$ Pelletier [69]

Figure 2.9: Dissociation constants of glycine: •, exp. results this work; ----, fit this work; \bigtriangledown , Datta [21]; \triangle , King [48]; \triangleleft , Owen [67]; \triangleright , Gillespie [34]; \diamondsuit , Clarke [19]; \Box , Izatt [44]

Figure 2.10: Dissociation constants of L-phenylalanine: $\bullet,$ exp. results this work; ----, fit this work; $\bigtriangledown,$ Izatt [45]

Figure 2.11: Dissociation constants of L-proline: •, exp. results this work; ----, fit this work; \bigtriangledown , Smith [85]; \triangle , Azab [6]

Figure 2.12: Dissociation constants of L-glutamic acid: •, exp. results this work; ----, fit this work; \bigtriangledown , Albert [3]; \triangle , Wilson [98]

Figure 2.13: Dissociation constants of L-aspartic acid: •, exp. results this work; ----, fit this work; \bigtriangledown , Smith [84]; \triangle , Batchelder [7]
	А	В	С	Avg. rel. dev.	Max. rel. dev.
	[-]	[-]	[-]	[%]	[%]
MDEA	-977.1	-77.882	10.7846	0.092	0.257
β -alanine	-5987.5	3.213	-1.2133	0.032	0.138
taurine	-5888.1	15.697	-2.9500	0.053	0.159
sarcosine	-4840.7	-6.123	-0.2016	0.019	0.038
6-aminohexanoic acid	-5871.3	-23.198	3.1031	0.041	0.156
DL-methionine	-7340.5	43.665	-7.1018	0.054	0.125
glycine	-7690.0	49.159	-8.0508	0.078	0.239
L-phenylalanine	-5070.7	-3.992	-0.0699	0.091	0.252
L-proline	-2865.5	-55.974	7.1627	0.039	0.118
L-glutamic acid	-7637.3	62.420	-10.4884	0.051	0.127
L-aspartic acid	-6623.7	30.801	-5.6139	0.151	0.393

Table 2.2: Coefficients in equation (2.37)

	this work	Kamps $[2]$	Oscarson [65]	Kim [47]	Littel [56]	Schwabe [82]
T [K]			ln(K	·) [-]		
293.00	-19.96^{a}	-19.93			-20.17	
298.15	-19.71	-19.69		-19.62		-19.60
298.20	-19.71		-19.71			
299.90	-19.63		-19.63			
303.00	-19.49	-19.47			-19.54	
308.15	-19.25					-19.13
311.00	-19.12		-19.11			
313.00	-19.03	-19.02				
318.15	-18.81					-18.69
323.00	-18.60	-18.60				
333.00	-18.18	-18.19			-19.06	
333.15	-18.17					-18.08
333.20	-18.17		-18.17		-18.38	
343.00	-17.77	-17.79				
353.00	-17.38	-17.41				
361.00	-17.08^{a}	-17.11	-17.09			
388.00	-16.11^{a}	-16.16^{a}	-16.14			
422.10	-15.00^{a}	-15.07^{a}	-15.06			
$\Delta_r G_m^{\circ}$ [kJ/mol]	48.87	48.81	48.86	48.63		48.59
$\Delta_r H_m^\circ$ [kJ/mol]	34.9	34.0	35.2	35.2		35.7
$\Delta_r S_m^\circ$ [J/(mol K	L)] -47.0	-49.6	-45.8	-45.1		-43.2
$\Delta_r C_{P,m}^{\circ} [\mathrm{J}/(\mathrm{mol}\ \mathrm{K}$	L)] 89.7	91.3	73.3			

Table 2.3: Comparison of correlated values of ln(K) and thermodynamic properties with literature data for protonated MDEA

 a Extrapolated value

_			this work	May [60]	Gillespie [34]	Dey [28]	Majumdar [57]	Boyd [13]	Christensen [18]
	7	[K]				$ln(K_2$	2) [-]		
	2	73.15	-25.51^{a}	-25.35				-25.44	
	2	78.15	-25.14^{a}	-24.95					
	23	88.15	-24.44^{a}	-24.23				-24.37	
	2	98.00	-23.79			-23.44	-23.53		
	2	98.15	-23.78	-23.56				-23.71	-23.57
	3	08.15	-23.17	-22.94				-23.09	
	3	13.15	-22.88	-22.65					
	3	18.15	-22.60					-22.52	
	32	23.15	-22.33		-22.09				
	34	48.15	-21.09		-20.84				
	3	98.15	-19.09^{a}		-18.82				
_	$\Delta_r G_m^\circ$	[kJ/mol]	58.95	58.41				58.77	
	$\Delta_r H_m^\circ$	[kJ/mol]	46.8	47.5	47.3			46.9	
	$\Delta_r S_m^\circ$	[J/(mol K)]	-40.9	-36.6	-37.7			-39.6	
_	$\Delta_r C^{\circ}_{P,m}$	[J/(mol K)]	-10.1	-59.8				-6.2	

Table 2.4: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for β -alanine

 a Extrapolated value

$\frac{1}{2}$	nei me aj nan	ne propereie
	this work	King $[49]$
T [K]	ln(K	2) [-]
283.15	-21.75^{a}	-21.76
288.15	-21.44^{a}	-21.45
293.15	-21.15^{a}	-21.15
298.15	-20.86	-20.86
303.15	-20.58	-20.59
308.15	-20.32	-20.32
313.15	-20.06	-20.06
318.15	-19.81	-19.81
323.15	-19.57	-19.57
$\Delta_r G_m^{\circ}$ [kJ/mol]	51.71	51.76
$\Delta_r H_m^{\circ}$ [kJ/mol]	41.6	41.9
$\Delta_r S_m^{\circ} = [\mathrm{J}/(\mathrm{mol} \mathrm{K})]$	-33.8	-33.1
$\Delta_r C^{\circ}_{P,m} [\mathrm{J/(mol \ K)}]$	-24.5	-35.0

Table 2.5: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for taurine

(-/		1 1
	this work	Datta [21, 22]
T [K]	ln	(K_2) [-]
278.15	-24.66^{a}	-24.67
288.15	-24.06^{a}	-24.06
298.15	-23.51	-23.49
308.15	-22.99	-22.96
318.15	-22.50	-22.47
$\Delta_r G_m^\circ$ [kJ/mol]	58.27	58.22
$\Delta_r H_m^\circ$ [kJ/mol]	39.7	40.5
$\Delta_r S_m^{\circ} = [\mathrm{J}/(\mathrm{mol} \mathrm{K})]$	-62.1	-59.4
$\Delta_r C^{\circ}_{P,m} [\mathrm{J/(mol \ K)}]$	-1.7	-12.5

Table 2.6: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for sarcosine

		this work	Smith $[84]$	Gillespie [34]	Brandariz [15]
1	[K]		l	$n(K_2)$ [-]	
2	74.15	-27.19^{a}	-26.86		
2	85.65	-26.20^{a}	-25.89		
2	98.15	-25.21	-24.88		-25.12
3	10.65	-24.29	-23.96		
3	23.15	-23.44	-23.11	-23.08	
3	48.15	-21.90		-21.57	
3	98.15	-19.37^{a}		-19.19	
$\Delta_r G_m^{\circ}$	[kJ/mol]	62.49	61.71		
$\Delta_r H_m^\circ$	[kJ/mol]	56.5	56.8		
$\Delta_r S_m^\circ$	[J/(mol K)]	-20.1	-16.7		
$\Delta_r C^{\circ}_{P,m}$	[J/(mol K)]	25.8			

Table 2.7: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for 6-aminohexanoic acid

 a Extrapolated value

	this work	Pelletier [69]
T [K]	ln($K_2)$ [-]
283.15	-22.36^{a}	-22.40
298.15	-21.42	-21.37
303.15	-21.13	-21.07
313.15	-20.59	-20.54
$\Delta_r G_m^{\circ}$ [kJ/mol]	53.09	52.75
$\Delta_r H_m^{\circ}$ [kJ/mol]	43.4	43.5
$\Delta_r S_m^{\circ} = [\mathrm{J/(mol \ K)}]$	-32.4	-31.4
$\Delta_r C^{\circ}_{P,m} [\mathrm{J/(mol \ K)}]$	-59.0	

Table 2.8: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for DL-methionine

	this work	Datta $[21, 22]$	King $[48]$	Owen $[67]$	Gillespie [34]	Clarke [19]	Izatt $[44]$
T [K]				$ln(K_2)$ [-]			
278.15	-23.80^{a}	-23.81					
283.15	-23.45^{a}		-23.47	-23.50			
288.15	-23.12^{a}	-23.14	-23.14	-23.15			
293.15	-22.81		-22.82	-22.82			
298.15	-22.50	-22.51	-22.52	-22.51			
303.15	-22.21		-22.22	-22.21			
308.15	-21.93	-21.94	-21.94	-21.93			
313.15	-21.66		-21.67	-21.65			
318.15	-21.40	-21.40	-21.41	-21.39			
323.15	-21.16		-21.16		-21.17		-21.17
348.15	-20.05				-20.03	-20.70	-20.01
378.15	-18.96^{a}					-19.66	
398.15	-18.35^{a}				-18.31	-18.95	
$\Delta_r G_m^\circ$ [kJ/r	nol] 55.78	55.81	55.85				
$\Delta_r H_m^\circ$ [kJ/r	nol] 44.0	44.2	44.2	45.3			43.95
$\Delta_r S_m^\circ$ [J/(mo	ol K)] -39.6	-38.9	-49.0				-39.1
$\Delta_r C_{P,m}^{\circ} [\mathrm{J}/(\mathrm{mod})]$	ol K)] -66.9	-44.9	-39.4				

Table 2.9: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for glycine

1 10	andes of the	m ₂) and mern	louy namic p	nopernes wi
			this work	Izatt $[45]$
	7	[K]	ln(K	2) [-]
	27	3.15^{a}	-22.95	-22.91
	28	33.15^{a}	-22.29	-22.24
	29	3.15^{a}	-21.69	-21.60
	3	03.15	-21.12	-21.07
	3	13.15	-20.59	-20.47
	$\Delta_r G_m^{\circ}$	[kJ/mol]	53.04	
	$\Delta_r H_m^\circ$	[kJ/mol]	42.0	43.1
	$\Delta_r S_m^\circ$	[J/(mol K)]	-37.1	-32.7
	$\Delta_r C_{P,m}^{\circ}$	[J/(mol K)]	-0.6	

Table 2.10: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for L-phenylalanine

		this work	Smith [85]	Azab [6]
7	[K]		$ln(K_2)$ [-]	
27	4.15^{a}	-26.22	-26.01	
28	85.65^{a}	-25.50	-25.26	
2	98.15	-24.77	-24.50	-24.45
3	10.65	-24.09	-23.81	
32	23.15	-23.45	-23.17	
$\Delta_r G_m^\circ$	[kJ/mol]	61.41	60.75	
$\Delta_r H_m^\circ$	[kJ/mol]	41.6	43.2	
$\Delta_r S_m^\circ$	[J/(mol K)]	-66.5	-59.0	
$\Delta_r C_{P,m}^{\circ}$	[J/(mol K)]	59.6		

Table 2.11: Comparison of correlated values of $ln(K_2)$ and thermodynamic properties with literature values for L-proline

/	•		
	this work	Albert [3]	Wilson [98]
T [K]		$ln(K_3)$ [-]	
293.15	-23.21	-22.84	
298.15	-22.95		-22.88
$\Delta_r G_m^{\circ}$ [kJ/mol]	56.90		
$\Delta_r H_m^{\circ}$ [kJ/mol]	37.5		
$\Delta_r S_m^{\circ} = [\mathrm{J}/(\mathrm{mol} \mathrm{K})]$	-65.1		
$\Delta_r C^{\circ}_{P,m} [\mathrm{J/(mol \ K)}]$	-87.2		

Table 2.12: Comparison of correlated values of $ln(K_3)$ and thermodynamic properties with literature values for L-glutamic acid

	this work	Smith $[84]$	Batchelder [7]
T [K]		$ln(K_3)$ [-]
274.15	-24.87	-24.42	
285.65	-24.13	-23.73	
298.15	-23.40	-23.03	-22.66
310.65	-22.74	-22.43	
323.15	-22.13	-21.90	
$\Delta_r G_m^{\circ}$ [kJ/mol]	58.01	57.15	
$\Delta_r H_m^{\circ}$ [kJ/mol]	41.2	37.8	
$\Delta_r S_m^{\circ} = [\mathrm{J}/(\mathrm{mol} \mathrm{K})]$	-56.5	-64.9	
$\Delta_r C_{P,m}^{\circ} [\mathrm{J/(mol \ K)}]$	-46.7		

Table 2.13: Comparison of correlated values of $ln(K_3)$ and thermodynamic properties with literature values for L-aspartic acid

stantis or ta	unne		
Run no.	Т	$ln(K_2)$	$ln(K_2)$
[-]	[K]	[-]	[-]
		K^+	Na^+
1	293.17	$\textbf{-}21.19\pm0.04$	-21.15
2	323.61	-19.59 ± 0.04	-19.55
3	353.78	-18.28 ± 0.03	-18.26
		Li^+	Na^+
1	293.18	$\textbf{-}21.16\pm0.04$	-21.14
2	323.60	-19.58 ± 0.04	-19.55
3	353.71	-18.28 ± 0.03	-18.26

 Table 2.14: Comparison of the effect of different counter ions on the determined

 dissociation constants of taurine

Blauwhoff [11] and Versteeg [94, 95] related the basic strength of an absorbent to the CO_2 reaction rate constant by a Brønsted plot. According to the authors there are linear correlations between the logarithm of the forward second order reaction rate constant and the basic strength. A higher basic strength can indicate a faster reaction between the absorbent and CO_2 . Equation (2.32) relates $\Delta_r G_m^{\circ}$ to the dissociation constant, and also the basic strength. A high value of $\Delta_r G_m^{\circ}$ is favorable, and can indicate a high reactivity of the absorbent with CO_2 . Even though, kinetic studies of the compounds have to be carried out before a definite conclusion can be drawn. During commercial post combustion CO_2 capture, an absorber is operated around 313 K and a desorber around 393 K depending on operating conditions. [50] From equation (2.33) it can be seen that a high value of $\Delta_r H_m^{\circ}$ will lead to a favorable shift of the dissociation reaction at absorber and desorber temperature conditions. This might further lead to cost saving operations of CO_2 post combustion capture plants, since the temperature difference between the absorber and the desorber might be reduced. Table 2.15 shows $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$ of commercially available CO₂ absorbents in comparison to the results from this work. The compounds are sorted with descending $\Delta_r G_m^{\circ}$ values. The values from this work are relisted in Table 2.15 for the convenience of the reader. As it can be seen, 6-aminohexanoic acid has higher values of both $\Delta_r G_m^{\circ}$ and $\Delta_r H_m^{\circ}$ than the commercially available amines listed. L-proline, β -alanine, sarcosine, L-aspartic acid and L-glutamic acid have a higher value of $\Delta_r G_m^{\circ}$ than the commercially available amines, but not necessarily a higher value of $\Delta_r H_m^{\circ}$.

2.7 Conclusion

The dissociation constants of protonated MDEA, the second dissociation constants of β -alanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, L-proline and the third dissociation constants of Lglutamic acid and L-aspartic acid have been determined from electromotive force measurements from 293 K to 353 K. Parts of the results extend the temperature range of available literature data for the investigated compounds. The experimental results agree with results previously reported in literature.

Based on the values for the standard state properties reported in this work, amino acid salts might be attractive compounds to be used as absorbents for

Compound	Reference	$\Delta_r G_m^\circ$	$\Delta_r H_m^\circ$
I I I I I I I I I I I I I I I I I I I		[kJ/mol]	[kJ/mol]
6-aminohexanoic acid	this work	62.49	56.5
L-proline	this work	61.41	41.6
β -alanine	this work	58.95	46.8
sarcosine	this work	58.28	39.7
L-aspartic acid	this work	58.01	41.2
L-glutamic acid	this work	56.90	37.5
3-amino-1-Propanol (MPA)	[82]	56.85	53.6
glycine	this work	55.78	44.0
piperazine (PZ)	[40]	55.55	42.9
2-amino-2-methyl-1-propanol (AMP)	[56]	55.40	49.9
2-(diethylamino)ethanol (DEMEA)	[56]	54.92	47.8
monoethanolamine (MEA)	[9]	54.21	50.5
2-(2-aminoethoxy)ethanol (DGA)	[65]	53.74	50.2
DL-methionine	this work	53.09	43.4
L-phenylalanine	this work	53.04	42.0
taurine	this work	51.69	41.5
diisopropanolamine (DIPA)	[47]	50.69	42.7
diethanolamine (DEA)	[12]	50.68	42.4
methyldiethanolamine (MDEA)	this work	48.87	34.9
triethanolamine (TEA)	[8]	44.31	33.5

Table 2.15: Comparison of values of the standard state thermodynamic properties for commercially available absorbents to this work

post-combustion CO_2 capture.

2.8 Outline of the model of Pitzer

A very brief outline of the model of Pitzer introduced by Pitzer [71] is given for a 1:1 aqueous electrolyte solution. For an electrolyte solution containing w_S kilograms of solvent, with molalities $m_i, m_j, ...,$ of solute spices i, j, ..., Pitzer [71] introduced the equation for the excess Gibbs energy:

$$\frac{G^{ex}}{RTw_S} = f(I_m) + \sum_i \sum_j m_i m_j B_{ij} + \sum_i \sum_j \sum_k m_i m_j m_k C_{ijk} + \dots$$
(2.38)

Pitzer [71] further derived the expression for the activity coefficient. For the dissolved species i : j, the activity coefficients are estimated by:

$$\ln\left(\gamma_{ij,m}\right) = -A_{\phi} \left[\frac{\sqrt{I_m}}{1 + b\sqrt{I_m}} + \frac{2}{b}\ln\left(1 + b\sqrt{I_m}\right)\right] + mB_{ij} + 3m^2C_{ij} \quad (2.39)$$

where I_m is defined as:

$$I_m = \frac{1}{2} \sum_{x=i,j} m_x z_x^2 \tag{2.40}$$

and $b = 1.2 \text{ kg}^{1/2} \text{ mol}^{-1/2}$. The Debye-Hückel term is given:

$$A_{\phi} = \frac{1}{3}\sqrt{2\pi N_A \rho_W} \left(\frac{e^2}{4\pi\epsilon_0\epsilon_W kT}\right)^{1.5} \tag{2.41}$$

where the dielectric constant of water, ϵ_W , was taken from Bradley [14]. The second virial coefficient is given:

$$B_{ij} = 2\beta_{ij}^{(0)} + \left(\frac{2\beta_{ij}^{(1)}}{\alpha^2 I_m}\right) \left[1 - \left(1 + \alpha I_m^{1/2} - \frac{\alpha^2 I_m}{2}\right) exp\left(-\alpha I_m^{1/2}\right)\right]$$
(2.42)

where $\beta_{ij}^{(0)}$, $\beta_{ij}^{(1)}$ and C_{ij} are salt specific interaction parameters. For the case considered here, $\alpha = 2.0 \text{ kg}^{1/2} \text{ mol}^{-1/2}$. In the case where interaction parameter are neglected, the activity of water follows from the Gibbs-Duhem equation in the form of:

$$ln(a_W) = \frac{M_W}{1000} \left\{ 2A_{\phi} \frac{I_m^{1.5}}{1 + b\sqrt{I_m}} - \sum_{i \neq W} m_i \right\}$$
(2.43)

2.8.1 Interaction parameters for KCl in the model of Pitzer

The following section reports the temperature dependence of the ion interaction parameters for KCl given by Pabalan [68]. The interaction parameters are calculated from equation (2.44) and Table 2.16. T is the temperature in Kelvin, T_R is 298.15 K, P is the pressure in bar and P_R is 179 bar. The density of water, ρ_W , was taken from Saul [80]. The pressure, P, was set to 1 bar. The pressure dependence of the thermodynamic properties are calculated from equation (2.45)

and Table 2.17. A complete description of the equations below are given in Pabalan [68].

$$f(T, P_r) = \frac{u_1 T^2}{6} + \frac{u_2 T}{2} + \frac{u_3 T^2 \left(\frac{\ln(T)}{2} - \frac{5}{12}\right)}{3} + \frac{u_4 T^3}{12} + \frac{u_5 T^4}{20} + u_6 \left[\frac{T}{2} + \frac{3 (227)^2}{2T} \frac{227 (T - 227) \ln (T - 227)}{T}\right] - u_7 \left[\frac{2 (647 - T) \ln (647 - T)}{T} + \ln (647 - T)\right] - \frac{K_1}{T} - f_L (T_r, P_r) \left(\frac{T_r^2}{T}\right) + K_2 + f_G (T_r, P_R) \quad (2.44)$$

Table 2.16: Parameters for equation (2.44)

parameter	$\beta_{KCl}^{(0)} \\ [\text{kg mol}^{-1}]$	$\beta_{KCl}^{(1)} \\ [\text{kg mol}^{-1}]$	$\frac{C_{KCl}}{[\mathrm{kg}^2 \mathrm{\ mol}^{-2}]}$
u_1	-2.10289e-2	2.20813e-1	0.0
u_2	6.03967e-1	-4.61849	7.64891e-4
u_3	3.67768e-3	-4.10116e-2	0.0
u_4	-7.05537e-6	1.10445e-4	-1.12131e-8
u_5	1.97968e-9	-4.73196e-8	1.72256e-11
u_6	-2.47588e-3	-2.74120e-2	0.0
u_7	1.44160e-1	3.32883e-1	-5.71188e-3
$f_L(T_r, 1 \text{bar})$	6.77136e-4	9.67854e-4	-4.12364e-5
$f_L\left(T_r, P_r\right)$	6.56838e-4	9.67854e-4	-4.12364e-5
$f_G(T_r, 1 \text{bar})$	4.8080e-2	2.18752e-1	-3.94e-4
$f_G\left(T_r, P_r\right)$	5.0038e-2	2.18752e-1	-3.94e-4
K_1	-2931.268116	6353.355434	28.172180
K_2	-33.953143	193.004059	-0.125567

$$ln\gamma_{\pm}(P_{2}) - ln\gamma_{\pm}(P_{1}) = -\left[A_{\phi}(P_{2}) - A_{\phi}(P_{1})\right] \left(\frac{I_{m}^{1/2}}{1 + bI_{m}^{1/2}} + \frac{2}{b}ln\left(1 + bI_{m}^{1/2}\right)\right) + \int_{P_{1}}^{P_{2}} \left\{2m\left(\frac{\partial\beta_{ij}^{(0)}}{\partial P}\right)_{T} + \frac{2m}{\alpha^{2}I_{m}}\left(\frac{\partial\beta_{ij}^{(1)}}{\partial P}\right)_{T}\left[1 - \left(1 + \alpha I_{m}^{1/2} - \frac{\alpha^{2}I_{m}}{2}\right)exp\left(-\alpha I_{m}^{1/2}\right)\right] + 3m^{2}\left(\frac{\partial C_{ij}}{\partial P}\right)_{T}\right\}dP \quad (2.45)$$

where $\left(\frac{\partial \beta_{ij}^{(0)}}{\partial P}\right)_T = B_{ij}^V$ and B_{ij}^V is calculated from equation (2.46). Further, in this case, $\left(\frac{\partial \beta_{ij}^{(1)}}{\partial P}\right)_T = 0$ and $\left(\frac{\partial C_{ij}}{\partial P}\right)_T = 0$. $f_V(T,P) = q_1 + \frac{q_2}{T} + q_3T + q_4T^2 + \frac{q_5}{647 - T} + P\left[q_6 + \frac{q_7}{T} + q_8T + q_9T^2 + \frac{q_{10}}{(647 - T)}\right] + P^2\left[q_{11} + \frac{q_{12}}{T} + q_{13}T + q_{14}T^2 + \frac{q_{15}}{(647 - T)}\right]$ (2.46)

Table 2.17. Tarameters for equation (2.40)								
	parameter	$\begin{bmatrix} B_{KCl}^V \\ [\text{kg mol}^{-1} \text{ bar}^{-1}] \end{bmatrix}$						
	q_1	0.0						
	q_2	0.0						
	q_3	9.45015e-8						
	q_4	-2.90741e-10						

 q_5

 q_6

 q_7

 q_8

 q_9

 q_{10}

 q_{11}

 q_{12}

 q_{13}

 q_{14}

 q_{15}

3.26205e-3

8.39662e-7

0.0

-4.41638e-9

6.71235e-12

-4.42327e-5

-7.97437e-10

0.0

4.12771e-12

-6.24996e-15

4.16221e-8

Table 2.17: Parameters for equation (2.46)

2.8.2 Interaction parameters for HCl in the model of Pitzer

The following section reports the density, pressure and temperature dependence on the ion interaction parameters for HCl given by Holmes [41]. The ion interaction parameters are given by equation (2.48) and Table 2.18. T is the temperature in Kelvin, T^* is 1 K, P^* is 1 MPa and ρ^* is 1 kg m⁻³. T_R , P_R and ρ_R are the reference temperature, pressure and density and are set to 298.15 K, 0.101325 MPa and 997.062 kg m⁻³, respectively. The pressure and density, Pand ρ , are set equal to the reference pressure and reference density. For HCl, the interaction parameter, C in equation (2.39), is defined:

$$C = \frac{1}{2}C_{HCl} \tag{2.47}$$

$$f(\rho, P, T) = q_1 + q_2 ln\left(\frac{\rho}{\rho_R}\right) + q_3 \frac{(\rho - \rho_R)}{\rho^*} + q_4 \frac{(T - T_R)}{T^*} + q_5 \frac{(P - P_R)}{P^*} \quad (2.48)$$

Table 2.18: Parameters for equation (2.48)							
parameter	$\beta_{HCl}^{(0)} \\ [\text{kg mol}^{-1}]$	$\beta_{HCl}^{(1)} \\ [\text{kg mol}^{-1}]$	$\frac{C_{HCl}}{[\mathrm{kg}^2 \mathrm{\ mol}^{-2}]}$				
q_1	0.17690	0.2973	0.362e-3				
q_2	-0.09140	16.147	0.0				
q_3	0.0	-17.631e-3	0.0				
q_4	-4.034e-4	0.0	-3.036e-5				
q_5	0.620e-4	7.20e-4	0.0				

Table 2.18: Parameters for equation (2.48)

2.9 Experimental equilibrium data

2.9.1 MDEA

Table 2	2.19:	Experimental	equilibrium	data	for	MDEA	measurements

T_{T}	m u cu	T_{TT}	m N OH	<i>m</i> MDE4	$(E_I - E_{II})$	$ln(K_{0})$
[12]	$[mol k \sigma^{-1}]$	- 11 [12]	$[mol kg^{-1}]$	$[mol kc^{-1}]$	$\begin{bmatrix} D_I & D_{II} \end{bmatrix}$	[]
$[\mathbf{n}]$	[IIIOI Kg	$[\mathbf{n}]$				[-]
202.25	0.0000	202.25	0.0000	0.0481	421.0	10.0520
293.25	0.0099	293.25	0.0099	0.0481	-421.9	-19.9550
293.20	0.0099	293.30	0.0099	0.1514	-402.8	-20.0101
293.20	0.0099	293.30	0.0099	0.2105	-400.7	-20.0441
293.20	0.0099	293.20	0.0099	0.3047	-470.5	-20.0739
293.20	0.0099	293.20	0.0099	0.3394	-460.0	-20.0722
293.20	0.0099	293.30 202.25	0.0099	0.4595	-400.0	-20.0001
293.23	0.0099	293.35	0.0099 Dun no	0.7509	-499.0	-20.0720
202.25	0.0000	202.25	0.0000	0.0805	442.0	20.0112
293.35	0.0099	293.35	0.0099	0.0695	-442.0	-20.0113
293.35	0.0099	293.25	0.0099	0.1030	-409.4	-20.0317
293.35	0.0099	293.25	0.0099	0.2097	-400.9	-20.0883
293.35	0.0099	293.25	0.0099	0.2352	497.7	-20.0907
293.35	0.0099	293.35	0.0099	0.4012	-401.1	-20.0997
230.00	0.0033	290.20	0.0035 Dup po	2	-490.0	-20.0900
203 45	0.0000	203 55	0.0000	0.0770	437 7	10 0002
293.45	0.0099	293.35	0.0099	0.0770	452.6	-19.9992
293.45	0.0099	293.45	0.0099	0.1314	-403.0	-20.0428
293.45	0.0099	293.45	0.0099	0.2200	476.4	20.0034
293.45	0.0099	293.45	0.0099	0.2504	-482.4	-20.0937
293.45	0.0099	293.45	0.0099	0.3711	-488.4	-20.1025
203.45	0.0000	203.35	0.0000	0.4700	-406.9	-20.1000
200.40	0.0055	255.50	Bup po	4	-450.5	-20.1040
298.65	0 0000	298 75	0 0000	0.0895	-443.4	-19 7/92
298.65	0.0000	298.75	0.0000	0.1636	-461.2	-10 7858
298.65	0.0000	298.65	0.0000	0.1050	-468.5	-19.8168
298.65	0.0099	298.55	0.0099	0.2057	-478.0	-19.8413
298.65	0.0000	298.55	0.0000	0.3604	-483.5	-19.8526
298.65	0.0099	298.65	0.0099	0.3004 0.4612	-489.9	-19.8461
298.65	0.0099	298.65	0.0099	0.5889	-496.4	-19.8558
200.00	0.0000	200.00	Bun no	5	10011	10.0000
298 65	0.0099	298 55	0.0099	0.0481	-423 5	-19 7203
298.65	0.0099	298.75	0.0099	0 1314	-454 9	-19 7749
298.65	0.0099	298.75	0.0099	0.2153	-469.4	-19.8172
298.65	0.0099	298.75	0.0099	0.3047	-478.4	-19.8095
298.65	0.0099	298.65	0.0099	0.3594	-483.0	-19.8283
298.65	0.0099	298.65	0.0099	0.4595	-489.4	-19.8301
298.65	0.0099	298.75	0.0099	0.7509	-501.8	-19.8180
	0.0000		Run no.	. 6		
298.75	0.0099	298.75	0.0099	0.0770	-439.0	-19.7502
298.75	0.0099	298.75	0.0099	0.1314	-455.2	-19.7876
298.75	0.0099	298.75	0.0099	0.2206	-470.0	-19.8165
298.75	0.0099	298.75	0.0099	0.2964	-478.2	-19.8315
298.75	0.0099	298.65	0.0099	0.4705	-490.5	-19.8506
298.75	0.0099	298.65	0.0099	0.6627	-499.1	-19.8451
			Run no.	. 7		
303.45	0.0099	303.55	0.0099	0.0895	-444.6	-19.5233
303.45	0.0099	303.55	0.0099	0.1636	-462.9	-19.5687
303.45	0.0099	303.35	0.0099	0.2097	-470.4	-19.6101
303.45	0.0099	303.35	0.0099	0.2952	-479.9	-19.6221
303.45	0.0099	303.35	0.0099	0.3604	-485.4	-19.6305
303.45	0.0099	303.55	0.0099	0.4612	-492.3	-19.6330
303.45	0.0099	303.55	0.0099	0.5889	-499.0	-19.6474
			Run no.	. 8		
303.45	0.0099	303.45	0.0099	0.0481	-424.7	-19.4996
						,

continu	ied from pre	vious pa	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	\bar{m}_{MDEA}	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
303.45	0.0099	303.55	0.0099	0.1314	-456.4	-19.5537
303.45	0.0099	303.55	0.0099	0.2153	-471.4	-19.6070
303.45	0.0099	303.55	0.0099	0.3047	-481.0	-19.6177
202.45	0.0099	202.45	0.0099	0.3394	-400.7	-19.0378
303.45 303.45	0.0099	303.45 303.55	0.0099	0.4595	-492.4	-19.0481
505.40	0.0055	000.00	Bun no	9	-004.0	-15.0100
313.45	0.0099	313.35	0.0099	0.0770	-442.7	-19.0955
313.45	0.0099	313.45	0.0099	0.1314	-459.7	-19.1279
313.45	0.0099	313.45	0.0099	0.2206	-474.8	-19.1427
313.45	0.0099	313.45	0.0099	0.2964	-483.4	-19.1592
313.45	0.0099	313.45	0.0099	0.3711	-490.1	-19.1812
313.45	0.0099	313.45	0.0099	0.4705	-496.4	-19.1781
313.45	0.0099	313.45	0.0099	0.6627	-505.5	-19.1792
	0.0000	010.15	Run no.	10	100.0	10.0500
313.55	0.0099	313.45	0.0099	0.0481	-426.6	-19.0536
313.55	0.0099	313.55	0.0099	0.1314	-459.6	-19.1189
313.00 212 55	0.0099	313.00	0.0099	0.2103	-474.0	-19.1513
313.00	0.0099	313.55	0.0099	0.3047	-404.4	-19.1027
313.55	0.0099	313.55	0.0099	0.3594	-405.8	-19.1743
313.55	0.0099	313.55	0.0099	0.7509	-508.6	-19.1668
0.000	0.0000		Run no.	11		
313.55	0.0099	313.55	0.0099	0.0895	-447.8	-19.1022
313.55	0.0099	313.55	0.0099	0.1636	-466.5	-19.1414
313.55	0.0099	313.65	0.0099	0.2097	-474.0	-19.1534
313.55	0.0099	313.55	0.0099	0.2952	-483.8	-19.1728
313.55	0.0099	313.55	0.0099	0.3604	-489.4	-19.1790
313.55	0.0099	313.55	0.0099	0.4612	-496.2	-19.1852
313.55	0.0099	313.55	0.0099	0.5889	-502.4	-19.1737
200.05	0.0000	200.05	Run no.	12	495.9	10 5649
322.00	0.0099	322.00	0.0099	0.0481	-420.0	-18.5645
322.85 322.85	0.0099	322.85 322.85	0.0099	0.2153	-472.0	-18 5553
322.85	0.0099	322.75	0.0099	0.3047	-481.7	-18.5551
322.85	0.0099	322.85	0.0099	0.3594	-486.3	-18.5474
322.85	0.0099	322.75	0.0099	0.4595	-492.7	-18.5385
322.85	0.0099	322.75	0.0099	0.7509	-505.1	-18.5014
			Run no.	13		
322.85	0.0099	322.75	0.0099	0.0895	-446.3	-18.5774
322.85	0.0099	322.85	0.0099	0.1636	-464.4	-18.5686
322.85	0.0099	322.85	0.0099	0.2097	-471.6	-18.5684
322.85	0.0099	322.85	0.0099	0.2952	-481.3	-18.5666
322.85	0.0099	322.85	0.0099	0.3604	-486.5	-18.5519
322.85	0.0099	322.75	0.0099	0.4612	-493.1	-18.5496
322.80	0.0099	322.80	0.0099 Bup po	0.0009	-499.3	-18.3240
333.25	0 0000	333 35	0 0000	0.0/81	-427 4	-18 1379
333.25	0.0099	333.25	0.0099	0.1314	-460.2	-18,1362
333.25	0.0099	333.25	0.0099	0.2153	-474.8	-18.1260
333.25	0.0099	333.15	0.0099	0.3047	-484.7	-18.1224
333.25	0.0099	333.15	0.0099	0.3594	-489.3	-18.1167
333.25	0.0099	333.15	0.0099	0.4595	-495.7	-18.0947
			Run no.	15		
333.25	0.0099	333.25	0.0099	0.0770	-442.9	-18.1235
333.25	0.0099	333.25	0.0099	0.1314	-459.9	-18.1254
333.25	0.0099	333.25	0.0099	0.2206	-474.9	-18.1040
333.25	0.0099	333.25	0.0099	0.2964	-483.4	-18.0984
333.25	0.0099	333.25	0.0099	0.3711	-489.9	-18.0987
333.25 222 05	0.0099	333.25 222.25	0.0099	0.4705	-496.0	-18.0748
əəə.2ə	0.0099	<u> </u>	0.0099 Bun no	16	-505.0	-10.0407
333 35	0 0000	333.25	0 0000	0.0805	-448 5	-18 1/06
333.35	0.0099	333.25	0.0099	0.1636	-467.0	-18.1415
555.00	0.0000		0.0000	0.2000		

continued on next page

T_I	m _{HCL}	T_{II}	m _{NaOHI}	\bar{m}_{MDEA}	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
333.35	0.0099	333.35	0.0099	0.2097	-474.3	-18.1310
333.35	0.0099	333.35	0.0099	0.2952	-484.1	-18.1225
333.35	0.0099	333.35	0.0099	0.3604	-489.7	-18.1167
333.35	0.0099	333.35	0.0099	0.4612	-496.7	-18.1154
333.35	0.0099	333.35	0.0099	0.5889	-502.8	-18.0869
			Run no.	17		
343.15	0.0099	343.15	0.0099	0.0895	-450.0	-17.7494
343.15	0.0099	343.15	0.0099	0.1636	-469.5	-17.7575
343.15	0.0099	343.15	0.0099	0.2097	-477.1	-17.7565
343.15	0.0099	343.15	0.0099	0.2952	-487.3	-17.7528
343.15	0.0099	343.25	0.0099	0.3604	-492.6	-17.7253
343.15	0.0099	343.15	0.0099	0.4612	-499.6	-17.7238
343.15	0.0099	343.15	0.0099	0.5889	-505.7	-17.6899
			Run no.	18		
343.25	0.0099	343.25	0.0099	0.0455	-426.3	-17.7437
343.25	0.0099	343.15	0.0099	0.1632	-468.7	-17.7342
343.25	0.0099	343.15	0.0099	0.2119	-476.7	-17.7327
343.25	0.0099	343.25	0.0099	0.3260	-489.3	-17.7148
343.25	0.0099	343.15	0.0099	0.9033	-516.0	-17.6254
			Run no.	19		
353.15	0.0099	353.25	0.0099	0.0455	-427.0	-17.3578
353.15	0.0099	353.05	0.0099	0.1632	-470.9	-17.3635
353.15	0.0099	353.15	0.0099	0.2119	-478.7	-17.3423
353.15	0.0099	353.25	0.0099	0.3260	-491.4	-17.3163
353.15	0.0099	353.25	0.0099	0.6627	-510.7	-17.2515
			Run no.	20		
353.25	0.0099	353.25	0.0099	0.0895	-451.6	-17.3676
353.25	0.0099	353.15	0.0099	0.1636	-471.4	-17.3728
353.25	0.0099	353.25	0.0099	0.2097	-478.8	-17.3524
353.25	0.0099	353.25	0.0099	0.2952	-489.1	-17.3424
353.25	0.0099	353.35	0.0099	0.3604	-494.3	-17.3068
353.25	0.0099	353.35	0.0099	0.4612	-501.5	-17.2994
353.25	0.0099	353.35	0.0099	0.5889	-508.3	-17.2838

continued from previous page

2.9.2 β -alanine

Table 2.20: Experimental equilibrium data for $\beta\text{-alanine}$ measurements

T_I	\bar{m}_{HCl_I}	T_{II}	\bar{m}_{NaOHII}	$\bar{m}_{\beta-alanine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
			Run n	p. 1	. 1	
293.15	0.0102	293.15	0.0100	0.0750	-440.2	-24.0732
293.15	0.0102	293.15	0.0100	0.1573	-419.7	-24.0776
293.15	0.0102	293.05	0.0100	0.2244	-410.4	-24.0908
293.15	0.0102	293.05	0.0100	0.3224	-400.9	-24.0907
293.15	0.0102	293.05	0.0100	0.3933	-396.1	-24.1052
293.15	0.0102	293.15	0.0100	0.5359	-388.1	-24.0981
293.15	0.0102	293.15	0.0100	0.7056	-381.5	-24.1164
			Run n	o. 2		
293.15	0.0102	293.15	0.0100	0.0732	-441.2	-24.0853
293.15	0.0102	293.15	0.0100	0.1515	-420.8	-24.0809
293.15	0.0102	293.15	0.0100	0.2280	-410.1	-24.0889
293.15	0.0102	293.15	0.0100	0.3004	-402.9	-24.0906
293.15	0.0102	293.15	0.0100	0.3801	-396.9	-24.0954
293.15	0.0102	293.15	0.0100	0.5277	-388.3	-24.0903
293.15	0.0102	293.25	0.0100	0.7116	-381.2	-24.1068
			Run n	o. 3		
293.25	0.0102	293.15	0.0100	0.0733	-441.2	-24.0882
293.25	0.0102	293.15	0.0100	0.1621	-419.4	-24.0987
293.25	0.0102	293.15	0.0100	0.2312	-409.9	-24.0966
293.25	0.0102	293.15	0.0100	0.3147	-401.7	-24.0923
293.25	0.0102	293.25	0.0100	0.3737	-397.4	-24.0923
293.25	0.0102	293.15	0.0100	0.5269	-389.0	-24.1176
293.25	0.0102	293.15	0.0100	0.6945	-382.3	-24.1331
			Run n	o. 4		
298.15	0.0102	298.25	0.0100	0.1573	-418.6	-23.7513
298.15	0.0102	298.15	0.0100	0.2244	-409.1	-23.7628
298.15	0.0102	298.15	0.0100	0.3224	-399.5	-23.7652
298.15	0.0102	298.15	0.0100	0.3933	-394.4	-23.7712
298.15	0.0102	298.25	0.0100	0.5359	-386.3	-23.7659
298.15	0.0102	298.25	0.0100	0.7056	-379.4	-23.7769
			Run n	o. 5		
298.25	0.0102	298.35	0.0100	0.0732	-440.3	-23.7467
298.25	0.0102	298.35	0.0100	0.1515	-419.3	-23.7329
298.25	0.0102	298.25	0.0100	0.2280	-408.3	-23.7430
298.25	0.0102	298.25	0.0100	0.3004	-401.1	-23.7495
298.25	0.0102	298.25	0.0100	0.3801	-394.8	-23.7466
298.25	0.0102	298.35	0.0100	0.5277	-386.4	-23.7490
298.25	0.0102	298.35	0.0100	0.7116	-379.0	-23.7650
			Run n	o. 6		
298.35	0.0102	298.35	0.0102	0.0733	-440.4	-23.7534
298.35	0.0102	298.35	0.0102	0.1621	-418.0	-23.7555
298.35	0.0102	298.25	0.0102	0.2312	-408.5	-23.7664
298.35	0.0102	298.25	0.0102	0.3147	-400.4	-23.7715
298.35	0.0102	298.35	0.0102	0.3737	-395.8	-23.7630
298.35	0.0102	298.25	0.0102	0.5269	-387.4	-23.7937
298.35	0.0102	298.25	0.0102	0.6945	-380.3	-23.7982
			Run ne	o. 7		
303.05	0.0102	303.15	0.0100	0.0750	-438.4	-23.4320
303.05	0.0102	303.15	0.0100	0.1573	-417.1	-23.4323
303.05	0.0102	303.05	0.0100	0.2244	-407.8	-23.4572
303.05	0.0102	302.95	0.0100	0.3224	-398.1	-23.4680
303.05	0.0102	302.95	0.0100	0.3933	-392.8	-23.4695
303.05	0.0102	303.15	0.0100	0.5359	-383.8	-23.4289
303.05	0.0102	303.15	0.0100	0.7056	-377.6	-23.4711
			Run ne	o. 8		
303.15	0.0102	303.25	0.0100	0.0732	-439.5	-23.4412
303.15	0.0102	303.25	0.0100	0.1515	-418.2	-23.4290
303.15	0.0102	303.25	0.0100	0.2280	-407.1	-23.4357

continu	ied from pre	vious pa	ge			
T_I	$\bar{m}_{HCl_{I}}$	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{\beta-alanine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	[mol kg ⁻¹]	[K]	[mol kg ⁻¹]	[mol kg ⁻¹]	[mV]	[-]
303.15	0.0102	303.25	0.0100	0.3004	-399.4	-23.4277
303.15	0.0102	303.25	0.0100	0.3801	-393.3	-23.4365
303.15	0.0102	303.20	0.0100	0.5277	-364.9	-23.4304
303.13	0.0102	303.20	Bun no	0.7110	-370.7	-23.4404
303.25	0.0102	303.25	0.0100	0.0733	-439.6	-23.4479
303.25	0.0102	303.05	0.0100	0.1621	-417.2	-23.4767
303.25	0.0102	303.25	0.0100	0.2312	-406.9	-23.4437
303.25	0.0102	303.15	0.0100	0.3147	-399.1	-23.4716
303.25	0.0102	303.25	0.0100	0.3737	-394.2	-23.4546
303.25	0.0102	303.25	0.0100	0.5269	-385.3	-23.4654
303.25	0.0102	302.95	0.0100	0.6945	-378.8	-23.5151
212.05	0.0109	212 15	Run no.	. 10	427.0	22 6556
313.05	0.0102	313.10	0.0100	0.0755	-457.9	-22.0000
313.05	0.0102	313.15	0.0100	0.2312	-404.0	-22.8464
313.05	0.0102	313.15	0.0100	0.3147	-395.6	-22.8553
313.05	0.0102	313.15	0.0100	0.3737	-391.1	-22.8653
313.05	0.0102	313.15	0.0100	0.5269	-381.8	-22.8719
313.05	0.0102	313.15	0.0100	0.6945	-374.3	-22.8747
			Run no.	. 11		
313.25	0.0102	313.35	0.0100	0.0732	-438.1	-22.8513
313.25	0.0102	313.25	0.0100	0.1515	-416.2	-22.8489
313.25	0.0102	313.25	0.0100	0.2280	-404.7	-22.8543
313.25	0.0102	313.25	0.0100	0.3004	-397.1	-22.8594
313.23 212.25	0.0102	313.20 212.25	0.0100	0.3801	-390.4	-22.8034
313.20	0.0102	313.25	0.0100	0.3211	-381.0	-22.8021
515.20	0.0102	515.20	Bun no	12	-375.0	-22.0110
313.35	0.0102	313.25	0.0100	0.0750	-437.5	-22.8640
313.35	0.0102	313.35	0.0100	0.1573	-415.4	-22.8546
313.35	0.0102	313.35	0.0100	0.2244	-405.2	-22.8514
313.35	0.0102	313.35	0.0100	0.3224	-395.0	-22.8497
313.35	0.0102	313.25	0.0100	0.3933	-389.5	-22.8562
313.35	0.0102	313.25	0.0100	0.5359	-381.3	-22.8686
313.35	0.0102	313.25	0.0100	0.7056	-374.1	-22.8813
202.05	0.0109	202.05	Run no.	. 13	426 E	99.9110
323.00 202.05	0.0102	323.00 202.05	0.0100	0.0752	-450.5	-22.3119
323.05	0.0102	323.05	0.0100	0.1313	-414.1	-22.3097
323.00 323.05	0.0102	323.05	0.0100	0.3004	-394.0	-22.3056
323.05	0.0102	323.05	0.0100	0.3801	-387.4	-22.3107
323.05	0.0102	322.95	0.0100	0.5277	-378.1	-22.3173
323.05	0.0102	322.95	0.0100	0.7116	-370.0	-22.3301
			Run no.	. 14		
323.15	0.0102	323.15	0.0100	0.0733	-436.5	-22.3088
323.15	0.0102	323.15	0.0100	0.1621	-412.1	-22.3053
323.15	0.0102	323.05	0.0100	0.2312	-401.4	-22.3005
323.15	0.0102	323.05	0.0100	0.3147	-392.6	-22.3045
323.13 202.15	0.0102	323.10 202.05	0.0100	0.5757	-301.1	-22.2990
323.15 323.15	0.0102	323.05 323.15	0.0100	0.5209	-370.2	-22.3132
020.10	0.0102	525.10	Bun no	15	-510.1	-22.0212
323.15	0.0102	323.15	0.0100	0.0750	-436.1	-22.3202
323.15	0.0102	323.15	0.0100	0.1573	-413.2	-22.3130
323.15	0.0102	323.15	0.0100	0.2244	-402.7	-22.3104
323.15	0.0102	323.15	0.0100	0.3224	-392.0	-22.3022
323.15	0.0102	323.15	0.0100	0.3933	-386.3	-22.3020
323.15	0.0102	323.15	0.0100	0.5359	-378.1	-22.3236
323.15	0.0102	323.15	0.0100	0.7056	-370.6	-22.3337
220.05	0.0100	000 75	Run no.	. 16	495 1	01 0114
332.85 220 0≝	0.0102	332.75 222 0E	0.0100	0.0732	-435.1	-21.8114
১১∠.୪১ ২২২ হ≍	0.0102	აა⊿.ბე ვვე ջ≍	0.0100	0.1010	-411.8	-21.7907 -21.7807
004.00	0.0102	002.00	0.0100	0.4460	-339.0	-41.1001

continu	ied from pre	vious pa	ge			
T_I	$\bar{m}_{HCl_{I}}$	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{\beta-alanine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	[mol kg ⁻¹]	[K]	[mol kg ⁻¹]	[mol kg ⁻¹]	[mV]	[-]
332.85	0.0102	332.75	0.0100	0.3004	-391.3	-21.8041
332.85	0.0102	332.75	0.0100	0.3801	-384.0	-21.8127
332.85	0.0102	332.70	0.0100	0.5277	-373.0	-21.0132
002.00	0.0102	352.10	Bun no	17	-300.4	-21.0171
332.85	0.0102	332.95	0.0100	0.0750	-434.0	-21.7890
332.85	0.0102	332.95	0.0100	0.1573	-410.4	-21.7815
332.85	0.0102	332.85	0.0100	0.2244	-399.8	-21.7920
332.85	0.0102	332.75	0.0100	0.3224	-388.9	-21.7932
332.85	0.0102	332.75	0.0100	0.3933	-382.8	-21.7849
332.85	0.0102	332.95	0.0100	0.5359	-373.9	-21.7804
332.89	0.0102	332.73	0.0100 Bun no	18	-300.3	-21.8030
332.95	0.0102	332.95	0.0100	0.0733	-434.3	-21.7749
332.95	0.0102	332.95	0.0100	0.1621	-409.0	-21.7657
332.95	0.0102	332.85	0.0100	0.2312	-398.2	-21.7685
332.95	0.0102	332.85	0.0100	0.3147	-389.3	-21.7783
332.95	0.0102	333.05	0.0100	0.3737	-384.2	-21.7669
332.95	0.0102	332.95	0.0100	0.5269	-374.7	-21.7922
332.95	0.0102	332.85	0.0100	0.6945	-367.2	-21.8165
949 95	0.0102	949 95	Run no.	. 19	122 6	21 2076
343.30	0.0102	343.30	0.0100	0.0755	-407.6	-21.2970
343.35	0.0102	343.35	0.0100	0.2312	-396.3	-21.2002
343.35	0.0102	343.45	0.0100	0.3147	-387.3	-21.2942
343.35	0.0102	343.45	0.0100	0.3737	-382.0	-21.2919
343.35	0.0102	343.45	0.0100	0.5269	-372.2	-21.3120
343.35	0.0102	343.45	0.0100	0.6945	-363.9	-21.3122
			Run no.	. 20	100.0	
343.65	0.0102	343.65	0.0100	0.0750	-433.2	-21.2972
343.65	0.0102	343.65	0.0100	0.1573	-408.8	-21.2882
343.05	0.0102	343.05	0.0100	0.2244	-385.6	-21.2744
343.65	0.0102	343.65	0.0100	0.3933	-379.7	-21.2605
343.65	0.0102	343.75	0.0100	0.5359	-371.0	-21.2779
343.65	0.0102	343.65	0.0100	0.7056	-362.8	-21.2853
			Run no.	. 21		
343.75	0.0102	343.75	0.0100	0.0732	-433.5	-21.2757
343.75	0.0102	343.75	0.0100	0.1515	-409.6	-21.2711
343.75	0.0102	343.65	0.0100	0.2280	-397.0	-21.2821
343.73 343 75	0.0102	343.00	0.0100	0.3004	-300.4	-21.2783
343.75	0.0102	343.65	0.0100	0.5277	-371.8	-21.2007
0 - 0 - 0	0.0202	0.20100	Run no.	. 22	0.010	
353.75	0.0102	353.75	0.0100	0.0732	-431.5	-20.8011
353.75	0.0102	353.75	0.0100	0.1515	-406.7	-20.7898
353.75	0.0102	353.65	0.0100	0.2280	-394.2	-20.8159
353.75	0.0102	353.65	0.0100	0.3004	-385.4	-20.8138
353.75	0.0102	353.85	0.0100	0.3801	-377.9	-20.8005
353.85	0.0102	353.05	0.0100	0.0750	-431.1	-20 8063
353.85	0.0102	353.95	0.0100	0.1573	-406.2	-20.8050
353.85	0.0102	353.85	0.0100	0.2244	-394.7	-20.8073
353.85	0.0102	353.85	0.0100	0.3224	-382.6	-20.7864
353.85	0.0102	353.95	0.0100	0.3933	-376.6	-20.7894
353.85	0.0102	353.95	0.0100	0.5359	-367.6	-20.8105
353.85	0.0102	353.75	0.0100	0.7056	-359.7	-20.8399
252 OF	0.0109	254 OF	Run no.	0.0722	191 1	20 7964
353.95 353.95	0.0102	353.85	0.0100	0.0733	-431.4 -405.1	-20.7804 -20.8060
353.95	0.0102	353.85	0.0100	0.2312	-393.8	-20.8101
353.95	0.0102	353.95	0.0100	0.3147	-384.6	-20.8238
353.95	0.0102	353.95	0.0100	0.3737	-379.7	-20.8399
353.95	0.0102	353.95	0.0100	0.5269	-369.4	-20.8534

continued on next page

continued from previous page

continued from previous page								
T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{\beta-alanine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$		
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]		
353.95	0.0102	353.95	0.0100	0.6945	-361.1	-20.8620		

2.9.3 Taurine

Table 2.21: Experimental equilibrium data for taurine measurements

T_I	\bar{m}_{HCl_I}	T_{II}	\bar{m}_{NaOHII}	$\bar{m}_{taurine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
		L J	Run no	1	L 'J	
293 25	0.0102	293 25	0.0100	0.0544	-376.4	21 1808
293.25	0.0102	293.15	0.0100	0.1414	-348.8	21.1785
293.25	0.0102	293.15	0.0100	0.2070	-338.9	21.1918
293 25	0.0102	293 15	0.0100	0.2842	-330.5	21 1901
293.25	0.0102	293.25	0.0100	0.3412	-325.8	21.1872
293.25	0.0102	293.15	0.0100	0.4143	-320.9	21.1072
200.20	0.0102	200.10	Bun no	2	020.0	21.1001
293 65	0.0082	293 65	0.0087	0.0632	-361.6	-21 1136
293.65	0.0082	293.65	0.0087	0.1379	-340.5	-21.1150
293.65	0.0082	293.65	0.0087	0.2106	-329.6	-21 1595
293.65	0.0082	293.65	0.0087	0.2479	-324.6	-21.1315
293.65	0.0082	293 55	0.0087	0.3301	-317.3	-21 1438
293.65	0.0082	293.55	0.0087	0.4705	-308.7	-21.1160
293.65	0.0082	293.65	0.0087	0.5369	-305.3	-21.1607
200.00	0.0002	200.00	Bun no	3	000.0	21.1001
203 65	0.0082	203 65	0.0087	0.0378	-377 3	-21 1083
203.65	0.0082	203.55	0.0087	0.1283	-3/1.8	-21.1000
203.65	0.0082	203.65	0.0087	0.1200	-329.4	-21.1204
293.05	0.0082	293.05	0.0087	0.2001	323.4	21.1351
293.05	0.0082	293.15	0.0087	0.2030	-322.4	-21.1209
293.05	0.0082	293.05	0.0087	0.4242	-310.7	-21.1343
293.05	0.0082	293.05	0.0087	0.4314	-310.0	-21.1475
293.05	0.0082	293.05	0.0087	0.3947	-302.4	-21.1300
200 45	0.0089	200 55	0.0087	. 4	260.0	20.9174
298.40	0.0082	296.00	0.0087	0.0052	-300.0	-20.0174
298.40	0.0082	296.40	0.0087	0.1579	-336.0	-20.85334
298.45	0.0082	296.00	0.0087	0.4705	-305.9	-20.8522
298.45	0.0082	298.45	0.0087	0.5369	-302.8	-20.8711
200 55	0.0099	200 55	Run no	. 0	276 6	90.0201
298.00	0.0082	296.00	0.0087	0.0378	-370.0	-20.0301
298.00	0.0082	296.45	0.0087	0.1265	-340.7	-20.8000
298.55	0.0082	298.55	0.0087	0.2081	-327.5	-20.8532
298.00	0.0082	298.00	0.0087	0.2696	-320.5	-20.8448
298.00	0.0082	298.05	0.0087	0.4242	-308.7	-20.8313
298.55	0.0082	298.45	0.0087	0.4314	-308.0	-20.8731
000.05	0.0000	000 15	Run no	. 6	050.0	00 5500
303.05	0.0082	303.15	0.0100	0.0798	-356.0	-20.5738
303.05	0.0082	303.25	0.0100	0.1490	-338.0	-20.5671
303.05	0.0082	303.25	0.0100	0.2085	-328.8	-20.5715
303.05	0.0082	303.25	0.0100	0.2891	-320.4	-20.5909
303.05	0.0082	303.05	0.0100	0.3210	-317.4	-20.5945
000 15	0.0000	000.45	Run no	. 7	054.0	
303.45	0.0082	303.45	0.0100	0.0830	-354.8	-20.5601
303.45	0.0082	303.45	0.0100	0.1396	-340.2	-20.5754
303.45	0.0082	303.45	0.0100	0.2138	-327.9	-20.5577
303.45	0.0082	303.45	0.0100	0.3688	-313.8	-20.5840
			Run no	. 8		
313.15	0.0082	313.15	0.0100	0.0798	-353.7	-20.0585
313.15	0.0082	313.15	0.0100	0.1490	-335.1	-20.0570
313.15	0.0082	313.05	0.0100	0.2085	-326.1	-20.0850
313.15	0.0082	313.05	0.0100	0.3210	-313.7	-20.0742
			Run no	. 9		
313.15	0.0082	313.05	0.0100	0.0830	-352.5	-20.0639
313.15	0.0082	313.25	0.0100	0.1396	-337.0	-20.0525
313.15	0.0082	313.15	0.0100	0.2138	-325.1	-20.0695
313.15	0.0082	313.15	0.0100	0.4125	-306.6	-20.0642
313.15	0.0082	313.05	0.0100	0.5588	-298.7	-20.0862
			Run no.	10		
323.35	0.0102	323.35	0.0100	0.0544	-370.4	19.5915

continu	ied from pre	vious pa	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{taurine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
202.25		202.45		[mol kg]	[m V]	10 5724
323.33 292.25	0.0102	222.45	0.0100	0.1414	-339.0	19.5724
323.35	0.0102	323.45	0.0100	0.2070	-310 /	19.5065
323.35	0.0102	323.45	0.0100	0.3412	-314.2	19.5786
323.35	0.0102	323 45	0.0100	0.4143	-308.5	19 5738
323.35	0.0102	323.45 323.45	0.0100	0.5598	-300.0	19.5762
	0.0101	0-0-0	Run no.	11		
323.55	0.0082	323.45	0.0100	0.1396	-334.2	-19.5652
323.55	0.0082	323.45	0.0100	0.2138	-321.3	-19.5551
323.55	0.0082	323.55	0.0100	0.2699	-314.4	-19.5458
323.55	0.0082	323.55	0.0100	0.3688	-306.0	-19.5670
323.55	0.0082	323.65	0.0100	0.4125	-302.2	-19.5411
323.55	0.0082	323.65	0.0100	0.5588	-293.7	-19.5463
000.05	0.0000	000.05	Run no.	12	055.0	10 1000
333.25	0.0082	333.25	0.0099	0.0652	-355.3	-19.1023
333.25	0.0082	333.20	0.0099	0.1258	-333.7	-19.0906
333.25	0.0082	333.15	0.0099	0.2807	-309.2	-19.0902
333.20 222.05	0.0082	333.10	0.0099	0.3083	-301.0	-19.0851
333.25	0.0082	333.15	0.0099 Dun no	12	-295.5	-19.0935
222.05	0.0082	222.15	Run no.	13	249 1	10 1160
333.2J 333.25	0.0082	333.15	0.0099	0.0810	-340.1	10 0872
333.2J 333.25	0.0082	333.25	0.0099	0.1091	-321.1	-19.0872
333.25	0.0082	333.15	0.0099	0.2035	308.6	10 0042
333.25	0.0082	333.25	0.0099	0.2507	-302.4	-19.0342
333.25	0.0082	333.25	0.0099	0.3528	-296.3	-19.0001
333.25	0.0082	333.25	0.0099	0.4305	-230.5	-19.0894
000.20	0.0002	000.20	Bun no	14	200.1	1010001
333.25	0.0082	333.25	0.0099	0.0793	-349.0	-19,1110
333.25	0.0082	333.25	0.0099	0.1205	-335.8	-19,1163
333.25	0.0082	333.25	0.0099	0.1879	-321.8	-19.1054
333.25	0.0082	333.25	0.0099	0.3105	-306.3	-19.0895
333.25	0.0082	333.25	0.0099	0.3885	-299.5	-19.0833
333.25	0.0082	333.25	0.0099	0.4498	-295.4	-19.0906
333.25	0.0082	333.15	0.0099	0.5301	-290.9	-19.1057
			Run no.	15		
343.15	0.0082	343.15	0.0099	0.0793	-347.0	-18.6976
343.15	0.0082	343.15	0.0099	0.1205	-333.0	-18.6892
343.15	0.0082	343.15	0.0099	0.1879	-318.4	-18.6720
343.15	0.0082	343.25	0.0099	0.3105	-302.6	-18.6574
343.15	0.0082	343.25	0.0099	0.3885	-295.7	-18.6547
343.15	0.0082	343.15	0.0099	0.4498	-291.3	-18.6601
343.15	0.0082	343.15	0.0099	0.5301	-286.7	-18.6721
240.05	0.0005	240.05	Run no.	16	240.2	10 4075
349.85	0.0095	349.85	0.0092	0.0735	-349.3	-18.4075
349.80 340 or	0.0095	349.80 340.95	0.0092	0.1700	-319.9 317 5	-10.3821
349.60	0.0095	349.85	0.0092	0.1944	-317.0	-18.4099
349.85	0.0095	349.95	0.0092	0.2319 0.4377	-310.0	-10.4270
349.85	0.0095	349.85	0.0092	0.4577	-284.0	-18 3712
345.00	0.0055	345.00	Bup po	17	-204.0	-10.0112
352.25	0.0082	352 15	0.0099	0.0793	-344 5	-18 3214
352.25	0.0082	352.25	0.0099	0.1205	-330.4	-18.3174
352.25	0.0082	352.25	0.0099	0.1879	-314.3	-18.2636
352.25	0.0082	352.25	0.0099	0.3105	-297.0	-18.2175
352.25	0.0082	352.25	0.0099	0.3885	-290.2	-18.2240
352.25	0.0082	352.25	0.0099	0.4498	-285.7	-18.2259
352.25	0.0082	352.25	0.0099	0.5301	-281.2	-18.2452
			Run no.	18		
352.25	0.0082	352.25	0.0099	0.0816	-343.2	-18.3056
352.25	0.0082	352.35	0.0099	0.1891	-314.7	-18.2789
352.25	0.0082	352.35	0.0099	0.2035	-312.7	-18.2906
352.25	0.0082	352.35	0.0099	0.2887	-302.0	-18.3028
352.25	0.0082	352.35	0.0099	0.3528	-294.3	-18.2560

continued from previous page

T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{taurine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
			Run no.	19		
353.85	0.0102	353.85	0.0100	0.0544	-363.8	18.2453
353.85	0.0102	353.85	0.0100	0.1414	-330.3	18.2305
353.85	0.0102	353.75	0.0100	0.2070	-317.6	18.2233
353.85	0.0102	353.75	0.0100	0.2842	-307.7	18.2294
353.85	0.0102	353.85	0.0100	0.3412	-301.7	18.2172
353.85	0.0102	353.75	0.0100	0.4143	-295.4	18.2141
353.85	0.0102	353.75	0.0100	0.5598	-285.7	18.2033

2.9.4 Sarcosine

Table 2.22: Experimental equilibrium data for sarcosine measurements

T_I	\bar{m}_{HCl_I}	T_{II}	\bar{m}_{NaOHII}	$\bar{m}_{sarcosine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
			Run no	. 1	. ,	11
293.65	0.0082	293.45	0.0100	0.1091	-416.3	-23.7579
293.65	0.0082	293.75	0.0100	0.1751	-403.6	-23.7455
293.65	0.0082	293.65	0.0100	0.2248	-397.0	-23.7540
293.65	0.0082	293.75	0.0100	0.3094	-388.2	-23.7316
293.65	0.0082	293.65	0.0100	0.3955	-381.9	-23.7417
293.65	0.0082	293.75	0.0100	0.5151	-374.8	-23.7252
293.65	0.0082	293.65	0.0100	0.6832	-367.6	-23,7339
	0.000-		Bun no	2		
293.75	0.0082	293.75	0.0100	0.0709	-429.0	-23.7553
293.75	0.0082	293.75	0.0100	0.1707	-404 7	-23 7630
293.75	0.0082	293.75	0.0100	0.2338	-396.3	-23 7622
203.75	0.0082	200.10	0.0100	0.3198	-387.8	-23 7575
203.75	0.0082	203.00	0.0100	0.4159	-380.9	-23.7010
203.75	0.0082	203.75	0.0100	0.5461	-374.5	-23 7740
203.75	0.0082	203.75	0.0100	0.7186	-367.2	-23 7645
200.10	0.0002	200.10	0.0100 Pup po	2	-301.2	-20.1040
208 55	0.0082	208 55	0.0100	0 1657	405.0	23 4876
298.55	0.0082	298.00	0.0100	0.1057	-405.0	-20.4010
298.00	0.0082	298.45	0.0100	0.2172	-397.4	-23.4644
296.00	0.0082	298.40	0.0100	0.3166	-307.3	-23.4901
298.00	0.0082	298.40	0.0100	0.4011	-361.2	-23.4692
200 05	0.0000	000 55	Run no	. 4	100.0	00 4504
298.65	0.0082	298.55	0.0100	0.0709	-428.6	-23.4704
298.65	0.0082	298.55	0.0100	0.1707	-404.1	-23.4856
298.65	0.0082	298.75	0.0100	0.2338	-395.5	-23.4697
298.65	0.0082	298.65	0.0100	0.3198	-387.1	-23.4744
298.65	0.0082	298.65	0.0100	0.4159	-380.2	-23.4764
			Run no	. 5		
303.45	0.0082	303.55	0.0100	0.1657	-404.8	-23.2214
303.45	0.0082	303.45	0.0100	0.2172	-397.1	-23.2190
303.45	0.0082	303.45	0.0100	0.3188	-386.5	-23.2121
303.45	0.0082	303.45	0.0100	0.4011	-380.5	-23.2189
303.45	0.0082	303.55	0.0100	0.5964	-369.6	-23.2012
303.45	0.0082	303.55	0.0100	0.6840	-366.0	-23.2027
			Run no	. 6		
303.65	0.0082	303.65	0.0100	0.1091	-416.5	-23.2143
303.65	0.0082	303.75	0.0100	0.1751	-402.9	-23.1977
303.65	0.0082	303.75	0.0100	0.2248	-396.0	-23.1968
303.65	0.0082	303.75	0.0100	0.3094	-387.1	-23.1884
303.65	0.0082	303.65	0.0100	0.3955	-380.7	-23.2025
303.65	0.0082	303.75	0.0100	0.5151	-373.4	-23.1879
303.65	0.0082	303.75	0.0100	0.6832	-365.7	-23.1808
			Run no	. 7		
313.55	0.0082	313.55	0.0100	0.1091	-416.5	-22.7160
313.55	0.0082	313.65	0.0100	0.1751	-402.5	-22.7011
313.55	0.0082	313.65	0.0100	0.2248	-395.3	-22.6974
313.55	0.0082	313.65	0.0100	0.3094	-386.1	-22.6886
313.55	0.0082	313.55	0.0100	0.3955	-379.2	-22.6916
313.55	0.0082	313.55	0.0100	0.5151	-371.9	-22.6916
313.55	0.0082	313.65	0.0100	0.6832	-363.9	-22.6772
			Run no	. 8		
313.65	0.0082	313.55	0.0100	0.0709	-429.7	-22.7211
313.65	0.0082	313.55	0.0100	0.1707	-403.5	-22.7182
313.65	0.0082	313.65	0.0100	0.2338	-394.6	-22.7138
313.65	0.0082	313.65	0.0100	0.3198	-385.3	-22.6944
313.65	0.0082	313.65	0.0100	0.4159	-378.1	-22.6982
313.65	0.0082	313.55	0.0100	0.5461	-370.6	-22.7042
313.65	0.0082	313.55	0.0100	0.7186	-363.1	-22.7055
			Run no	9		

contin	ued from	previous	page
T		T	

comm	ueu nom pre	vious pa	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	\bar{m}_{NaOHII}	$\bar{m}_{sarcosine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
323 55	0.0082	323 55	0.0100	0.1657	-404.4	-22 2604
323.55	0.0082	323.65	0.0100	0.2172	306.0	22.2001
323.33 222 EE	0.0082	222.05	0.0100	0.2172	-390.0	-22.2392
323.55	0.0082	323.00	0.0100	0.3188	-384.8	-22.2359
323.55	0.0082	323.65	0.0100	0.4011	-378.1	-22.2319
323.55	0.0082	323.45	0.0100	0.6840	-363.1	-22.2485
			Run no.	. 10		
323.65	0.0082	323.75	0.0100	0.1707	-403.2	-22.2391
323.65	0.0082	323.65	0.0100	0.2338	-393.8	-22.2385
323.65	0.0082	323.75	0.0100	0.3198	-384.5	-22.2242
323.65	0.0082	323.65	0.0100	0.4159	-376.9	-22,2273
323.65	0.0082	323.65	0.0100	0.5461	-369.0	-22 2220
323.65	0.0082	323 75	0.0100	0.7186	-361.1	-22.2220
525.00	0.0002	020.10	0.0100 Due ee	11	-501.1	-22.2124
222.05	0.0000	999.15	0.0100	. 11	41C C	01 0000
333.25	0.0082	333.15	0.0100	0.1091	-410.0	-21.8233
333.25	0.0082	333.25	0.0100	0.1751	-402.0	-21.8182
333.25	0.0082	333.25	0.0100	0.2248	-394.2	-21.8092
333.25	0.0082	333.25	0.0100	0.3094	-384.3	-21.7959
333.25	0.0082	333.25	0.0100	0.3955	-376.9	-21.7908
333.25	0.0082	333.15	0.0100	0.5151	-369.0	-21.7909
333.25	0.0082	333.15	0.0100	0.6832	-360.7	-21.7889
			Run no.	. 12		
333.45	0.0082	333.45	0.0100	0.1657	-403.8	-21.8137
333.45	0.0082	333.35	0.0100	0.2172	-395.3	-21.8088
333.45	0.0082	333.55	0.0100	0.3188	-383.6	-21,7893
333.45	0.0082	333.45	0.0100	0.4011	-376.5	-21 7836
333.45	0.0082	333.45	0.0100	0.5064	364.0	21.7848
222 45	0.0082	222.45	0.0100	0.5304	-304.3	-21.7848
000.40	0.0082	000.40	0.0100	19	-300.9	-21.1041
0.40.05	0.0000	040.05	Run no.	. 13	100 5	01 4004
343.05	0.0082	342.95	0.0100	0.1657	-403.5	-21.4204
343.05	0.0082	342.95	0.0100	0.2172	-394.5	-21.4014
343.05	0.0082	343.15	0.0100	0.3188	-382.8	-21.3938
343.05	0.0082	343.15	0.0100	0.4011	-375.5	-21.3830
343.05	0.0082	343.05	0.0100	0.5964	-363.6	-21.3902
343.05	0.0082	342.95	0.0100	0.6840	-359.4	-21.3920
			Run no.	. 14		
343.05	0.0082	343.05	0.0100	0.0709	-431.1	-21.4150
343.05	0.0082	343.15	0.0100	0.1707	-402.2	-21.3978
343.05	0.0082	343.15	0.0100	0.2338	-392.1	-21.3869
343.05	0.0082	343.05	0.0100	0.3198	-382.4	-21.3885
343.05	0.0082	343 15	0.0100	0.4159	-374.0	-21.3695
3/3 05	0.0082	3/3 15	0.0100	0.5461	-365.6	_21.3633
343.05	0.0082	343.15	0.0100	0.5401	356.8	-21.3033
343.05	0.0082	343.15	0.0100	0.7100	-330.8	-21.3443
950 55	0.0000	950 55	Run no.	. 15	100 5	01 1070
350.55	0.0082	350.55	0.0100	0.1657	-403.5	-21.1272
350.55	0.0082	350.65	0.0100	0.2172	-394.0	-21.0934
350.55	0.0082	350.65	0.0100	0.3188	-381.3	-21.0712
350.55	0.0082	350.55	0.0100	0.4011	-373.9	-21.0672
350.55	0.0082	350.65	0.0100	0.5964	-362.2	-21.0801
350.55	0.0082	350.65	0.0100	0.6840	-358.4	-21.0934
			Run no.	. 16		
350.55	0.0082	350.65	0.0100	0.1091	-415.8	-21.0794
350.55	0.0082	350.65	0.0100	0.1751	-401.8	-21.1249
350 55	0.0082	350.65	0.0100	0.2248	-393.2	-21.1027
350.55	0.0002	350 55	0.0100	0.3004	-383.2	_21.1021
350.55	0.0002	350.55	0.0100	0.3034	-303.4 375 9	-21.1001
250.55	0.0082	350.05	0.0100	0.5955	-313.3	-41.0940
300.05	0.0082	350.65	0.0100	0.0101	-307.0	-21.0898
350.55	0.0082	350.45	0.0100	0.6832	-357.9	-21.0848

2.9.5 6-Aminohexanoic acid

Table 2.23: Experimental equilibrium data for 6-aminohexanoic acid measurements

T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{6-amhex.\ acid_{II}}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
			Run	1 no. 1		
293.85	0.0102	293.75	0.0099	0.0745	-477.5	-25.3319
293.85	0.0102	293.85	0.0099	0.1523	-457.5	-25.3181
293.85	0.0102	293.75	0.0099	0.2039	-449.7	-25.3248
293.85	0.0102	293.85	0.0099	0.2857	-440.7	-25.3130
293.85	0.0102	293.75	0.0099	0.3473	-435.5	-25.3156
293.85	0.0102	293.75	0.0099	0.4128	-431.1	-25.3188
293.85	0.0102	293.85	0.0099	0.5800	-422.3	-25.3111
202.95	0.0109	202 8F	A OOOO	1 no. 2	470.1	OF 2176
293.83	0.0102	293.83	0.0099	0.0701	-479.1	-20.0170
293.85	0.0102	293.85	0.0099	0.1150	-405.5	-20.0244
293.85	0.0102	293.85	0.0033	0.1331	-441 7	-25 3129
203.85	0.0102	203.00	0.0000	0.2100	-434.8	-25 3198
203.85	0.0102	203.75	0.0000	0.4250	-430.3	-25 3171
293.85	0.0102	293 75	0.0099	0.5141	-425.5	-25.3217
200.00	0.0102	200.10	Bur	1 no. 3	120.0	20.0211
293.85	0.0102	293.95	0.0099	0.0462	-491.7	-25.3126
293.85	0.0102	293.85	0.0099	0.1357	-460.9	-25.3281
293.85	0.0102	293.85	0.0099	0.2010	-450.3	-25.3259
293.85	0.0102	293.85	0.0099	0.2892	-440.8	-25.3289
293.85	0.0102	293.95	0.0099	0.3466	-435.8	-25.3111
293.85	0.0102	293.95	0.0099	0.4220	-430.7	-25.3114
293.85	0.0102	293.85	0.0099	0.5765	-422.7	-25.3202
			Run	no. 4		
298.65	0.0102	298.65	0.0099	0.0701	-477.7	-24.9593
298.65	0.0102	298.65	0.0099	0.1150	-463.6	-24.9631
298.65	0.0102	298.55	0.0099	0.1981	-448.6	-24.9661
298.65	0.0102	298.55	0.0099	0.2750	-439.7	-24.9617
298.65	0.0102	298.65	0.0099	0.3582	-432.6	-24.9515
298.65	0.0102	298.65	0.0099	0.4250	-427.9	-24.9439
298.65	0.0102	298.65	0.0099	0.5141	-422.9	-24.9438
			Run	1 no. 5		
298.65	0.0102	298.75	0.0099	0.1523	-455.5	-24.9420
298.65	0.0102	298.75	0.0099	0.2039	-447.6	-24.9427
298.65	0.0102	298.75	0.0099	0.2857	-438.4	-24.9361
298.65	0.0102	298.65	0.0099	0.3473	-433.3	-24.9457
298.65	0.0102	298.75	0.0099	0.4128	-428.7	-24.9374
298.00	0.0102	298.75	0.0099	0.5800	-419.0	-24.9306
20.9.75	0.0109	200 65	A OOOO	1 no. b	400.2	94 0559
290.10 208 75	0.0102	296.00 208.65	0.0099	0.0402	-490.3	-24.9008 24.0506
290.10 208 75	0.0102	290.00 208 75	0.0099	0.1007	-400.9	-24.9090 -24.0416
208 75	0.0102	200.10	0.0099	0.2010	-441.9	-24.3410
298.15	0.0102	298.75	0.0099	0.2892	-430.1	-24.9390
298.15	0.0102	298.75	0.0033	0.4220	428.3	24.9451
298.75 298.75	0.0102	298.65	0.0099	0.5765	-420.2	-24.9407
250.10	0.0102	250.00	0.0000 Bur	0.0100	-420.2	-24.5000
303.55	0.0102	303 55	0.0099	0.0745	-474 1	-24.5907
303.55	0.0102	303.65	0.0099	0.1523	-453.3	-24.5724
303.55	0.0102	303.65	0.0099	0.2039	-445.4	-24.5780
303.55	0.0102	303.65	0.0099	0.2857	-436.1	-24.5734
303.55	0.0102	303.55	0.0099	0.3473	-430.9	-24.5822
303.55	0.0102	303.65	0.0099	0.4128	-426.2	-24.5731
303.55	0.0102	303.65	0.0099	0.5800	-417.0	-24.5682
			Run	1 no. 8		
303.65	0.0102	303.65	0.0099	0.0701	-475.7	-24.5771

continu	ied from pre	evious pa	ge			
T_I	$\bar{m}_{HCl_{I}}$	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{6-amhex.\ acid_{II}}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	[mol kg ⁻¹]	[K]	[mol kg 1]	[mol kg ⁻¹]	[mV]	[-]
303.00	0.0102	303.00	0.0099	0.1150	-401.4	-24.0824
303.05	0.0102	303.05	0.0099	0.1981	-440.1	-24.5705
303.65	0.0102	303.55	0.0099	0.3582	-429.9	-24.5780
303.65	0.0102	303.65	0.0099	0.4250	-425.2	-24 5669
303.65	0.0102	303.55	0.0099	0.5141	-420.3	-24.5803
			Run	no. 9		
303.65	0.0102	303.65	0.0099	0.0462	-488.3	-24.5640
303.65	0.0102	303.65	0.0099	0.1357	-456.5	-24.5731
303.65	0.0102	303.65	0.0099	0.2010	-445.7	-24.5767
303.65	0.0102	303.65	0.0099	0.2892	-435.6	-24.5689
303.65	0.0102	303.75	0.0099	0.3466	-430.7	-24.5617
303.65	0.0102	303.65	0.0099	0.4220	-425.6	-24.5750
303.65	0.0102	303.55	0.0099	0.5765	-417.5	-24.5897
	0.0100	010.05	Run	no. 10	150.0	00.01 = 0
313.05	0.0102	312.95	0.0099	0.0745	-470.6	-23.9173
313.05	0.0102	313.15	0.0099	0.1523	-448.9	-23.8836
313.05	0.0102	313.15	0.0099	0.2039	-440.6	-23.8836
313.05	0.0102	313.15	0.0099	0.2857	-431.1	-23.8824
313.05 212.0F	0.0102	313.05 212.15	0.0099	0.3473	-425.8	-23.8932
313.UD 313.05	0.0102	313.15 319.15	0.0099	0.4128	-421.4	-23.9011
010.00	0.0102	919.19	0.0099 R	no 11	-411.1	-20.0000
313.95	0.0109	313 35	n 0000	0.0701	-471 0	-23 8710
313.25	0.0102	313 35	0.0099	0.1150	-457 3	-23.8833
313.25	0.0102	313.35	0.0099	0.1981	-441.2	-23.8660
313.25	0.0102	313.15	0.0099	0.2750	-432.3	-23.8906
313.25	0.0102	313.25	0.0099	0.3582	-424.8	-23.8790
313.25	0.0102	313.35	0.0099	0.4250	-420.2	-23.8775
313.25	0.0102	313.25	0.0099	0.5141	-415.1	-23.8889
			Run	no. 12		
313.35	0.0102	313.45	0.0099	0.0462	-485.1	-23.8602
313.35	0.0102	313.25	0.0099	0.1357	-452.5	-23.8913
313.35	0.0102	313.25	0.0099	0.2010	-441.3	-23.8928
313.35	0.0102	313.25	0.0099	0.2892	-430.9	-23.8857
313.35	0.0102	313.35	0.0099	0.3466	-425.4	-23.8624
313.35	0.0102	313.25	0.0099	0.4220	-420.5	-23.8887
313.35	0.0102	313.25	0.0099	0.5765	-412.0	-23.8917
			Run	no. 13		
322.45	0.0102	322.55	0.0099	0.0745	-466.8	-23.2582
322.45	0.0102	322.55	0.0099	0.1523	-444.6	-23.2438
322.45	0.0102	322.35	0.0099	0.2039	-435.7	-23.2433
344.40 200 45	0.0102	322.00	0.0099	0.2897	-420.8	-23.2200
322.40 322.45	0.0102	344.40 300.25	0.0099	0.34/3	-420.3	-20.2000 23.2400
322.40	0.0102	322.30	0.0099	0.4120	-410.0	-20.2400 -23.2407
522.45	0.0102	322.43	0.0099 Bun	no 14	-405.9	-23.2407
322.45	0.0102	322.45	0.0099	0.0701	-468.6	-23.2605
322.45	0.0102	322.55	0.0099	0.1150	-453.3	-23.2559
322.45	0.0102	322.55	0.0099	0.1981	-437.0	-23.2487
322.45	0.0102	322.55	0.0099	0.2750	-427.3	-23.2414
322.45	0.0102	322.55	0.0099	0.3582	-419.9	-23.2477
322.45	0.0102	322.55	0.0099	0.4250	-415.0	-23.2465
322.45	0.0102	322.55	0.0099	0.5141	-410.4	-23.2752
-	-		Run	no. 15	-	-
322.75	0.0102	322.75	0.0099	0.0462	-482.1	-23.2349
322.75	0.0102	322.65	0.0099	0.1357	-448.2	-23.2479
322.75	0.0102	322.75	0.0099	0.2010	-436.4	-23.2340
322.75	0.0102	322.75	0.0099	0.2892	-425.5	-23.2203
322.75	0.0102	322.75	0.0099	0.3466	-420.5	-23.2273
322.75	0.0102	322.65	0.0099	0.4220	-414.7	-23.2262
322.75	0.0102	322.75	0.0099	0.5765	-405.9	-23.2219
			Run	no. 16		
334.15	0.0102	334.05	0.0099	0.0462	-478.0	-22.5054
					continued or	n next page

ontinued from previous page

COIIII	nueu nom pr	evious pag	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{6-amhex.\ acid_{II}}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
334.13	5 0.0102	334.05	0.0099	0.1357	-442.6	-22.5027
334.13	5 0.0102	334.15	0.0099	0.2010	-430.8	-22.5039
334.13	5 0.0102	334.15	0.0099	0.2892	-419.5	-22.4898
334.13	5 0.0102	334.15	0.0099	0.3466	-413.8	-22.4786
334.13	5 0.0102	334.15	0.0099	0.4220	-408.1	-22.4823
334.15	5 0.0102	334.15	0.0099	0.5765	-399.2	-22.4912
			Rui	n no. 17		
334.15	5 0.0102	334.15	0.0099	0.0701	-464.0	-22.5092
334.15	5 0.0102	334.15	0.0099	0.1150	-448.3	-22.5168
334.13	5 0.0102	334.15	0.0099	0.1981	-431.3	-22.5058
334.13	5 0.0102	334.15	0.0099	0.2750	-421.0	-22.4898
334.13	5 0.0102	334.15	0.0099	0.3582	-412.9	-22.4811
334.13	5 0.0102	334.15	0.0099	0.4250	-408.3	-22.4965
334.13	5 0.0102	334.15	0.0099	0.5141	-403.5	-22.5241
			Rui	n no. 18		
343.85	5 0.0102	343.75	0.0099	0.0701	-459.2	-21.8970
343.85	5 0.0102	343.85	0.0099	0.1150	-443.4	-21.9115
343.85	5 0.0102	343.75	0.0099	0.1981	-425.4	-21.8891
343.85	5 0.0102	343.75	0.0099	0.2750	-415.1	-21.8833
343.8	5 0.0102	343.85	0.0099	0.3582	-406.5	-21.8604
343.8	5 0.0102	343.85	0.0099	0.4250	-402.1	-21.8871
343.8	5 0.0102	343.85	0.0099	0.5141	-397.4	-21.9228
		0.000	Ru	n no. 19		
343.8	5 0.0102	343.75	0.0099	0.0462	-474.0	-21.8996
343.8	5 0.0102	343.85	0.0099	0.1357	-437.1	-21.8771
343.8	5 0.0102	343.95	0.0099	0.2010	-424.6	-21.8669
343.8	5 0.0102	343.95	0.0099	0.2892	-412.9	-21.8506
343.8	5 0.0102	343.85	0.0099	0.3466	-408.7	-21,9009
343.8	5 0.0102	343.85	0.0099	0.4220	-402.3	-21.8866
343.8	5 0.0102	343.85	0.0099	0.5765	-393.4	-21.9043
	010101	010.00	Ru	n no. 20	00011	2110010
353.13	5 0.0102	353.15	0.0099	0.0462	-470.6	-21.3590
353.15	5 0.0102	353.15	0.0099	0.1357	-433.3	-21.3634
353.15	5 0.0102	353.15	0.0099	0.2010	-421.2	-21.3830
353.15	5 0.0102	353.15	0.0099	0.2892	-409.7	-21.3836
353.15	5 0.0102	353.25	0.0099	0.3466	-404.2	-21.3847
353.15	5 0.0102	353.25	0.0099	0.4220	-398.6	-21.4025
353.15	5 0.0102	353.15	0.0099	0.5765	-389.8	-21.4363
			Bu	n no. 21		
353.25	5 0.0102	353.25	0.0099	0.0701	-456.6	-21.3928
353.2	5 0.0102	353.25	0.0099	0.1150	-440.4	-21.4144
353.2	5 0.0102	353.25	0.0099	0.1981	-422.6	-21.4096
353.2	5 0.0102	353.25	0.0099	0.2750	-412.0	-21.4033
353.2	5 0.0102	353.15	0.0099	0.3582	-402.8	-21.3787
353.2	5 0.0102	353.25	0.0099	0.4250	-397.9	-21.3879
353.2	5 0.0102	353.25	0.0099	0.5141	-393.2	-21.4278
			0.0000			

continued from previous page

2.9.6 DL-methionine

Table 2.24: Experimental equilibrium data for DL-methionine measurements

T_{I}	<i>т</i> нсі.	T_{II}	\bar{m}_{NaOHII}	m _{DL} _methionine	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol \ kg^{-1}]$	[mV]	[_]
[11]		[**]	Bun	no 1	[,]	
293.35	0.0099	293.45	0.0097	0.0128	-455.8	-21.7227
293.35	0.0099	293.35	0.0097	0.0278	-410.3	-21.6721
293.35	0.0099	293.35	0.0097	0.0579	-385.8	-21.6821
293.35	0.0099	293.35	0.0097	0.0719	-378.5	-21.6493
293.35	0.0099	293.45	0.0097	0.1293	-362.2	-21.6514
293.35	0.0099	293.45	0.0097	0.1771	-353.6	-21.6477
	0.0000		Run	no. 2	00010	
293.35	0.0099	293.55	0.0097	0.0121	-462.4	-21.7243
293.35	0.0099	293.45	0.0097	0.0187	-428.1	-21.6740
293.35	0.0099	293.45	0.0097	0.0227	-418.7	-21.6663
293.35	0.0099	293.45	0.0097	0.0292	-408.4	-21.6661
293.35	0.0099	293.45	0.0097	0.0458	-392.7	-21.6597
293.35	0.0099	293.45	0.0097	0.0663	-381.1	-21.6516
			Run	no. 3		
293.55	0.0099	293.55	0.0097	0.0178	-431.8	-21.7031
293.55	0.0099	293.45	0.0097	0.0208	-422.6	-21.6670
293.55	0.0099	293.55	0.0097	0.0297	-407.8	-21.6628
293.55	0.0099	293.45	0.0097	0.0359	-401.1	-21.6729
293.55	0.0099	293.45	0.0097	0.0546	-387.4	-21.6702
293.55	0.0099	293.45	0.0097	0.0841	-374.8	-21.6770
			Run	no. 4		
298.35	0.0099	298.45	0.0097	0.0128	-455.9	-21.4289
298.35	0.0099	298.35	0.0097	0.0278	-409.8	-21.3826
298.35	0.0099	298.15	0.0097	0.0579	-384.9	-21.4054
298.35	0.0099	298.25	0.0097	0.0719	-377.9	-21.3829
298.35	0.0099	298.55	0.0097	0.1293	-360.8	-21.3531
298.35	0.0099	298.35	0.0097	0.1771	-352.4	-21.3743
			Run	no. 5		
298.45	0.0099	298.55	0.0097	0.0178	-431.2	-21.3951
298.45	0.0099	298.35	0.0097	0.0208	-422.6	-21.3947
298.45	0.0099	298.55	0.0097	0.0297	-406.9	-21.3586
298.45	0.0099	298.45	0.0097	0.0359	-399.9	-21.3613
298.45	0.0099	298.35	0.0097	0.0546	-386.5	-21.3855
298.45	0.0099	298.35	0.0097	0.0841	-373.4	-21.3810
			Run	no. 6		
298.55	0.0099	298.65	0.0097	0.0121	-462.1	-21.4066
298.55	0.0099	298.55	0.0097	0.0187	-427.4	-21.3610
298.55	0.0099	298.55	0.0097	0.0227	-418.1	-21.3634
298.55	0.0099	298.45	0.0097	0.0292	-407.5	-21.3647
298.55	0.0099	298.65	0.0097	0.0458	-391.4	-21.3407
298.55	0.0099	298.75	0.0097	0.0663	-379.6	-21.3268
			Run	no. 7		
303.15	0.0099	303.25	0.0097	0.0128	-455.9	-21.1523
303.15	0.0099	303.25	0.0097	0.0278	-409.2	-21.1029
303.15	0.0099	303.25	0.0097	0.0579	-383.7	-21.1061
303.15	0.0099	303.25	0.0097	0.0719	-376.5	-21.0866
303.15	0.0099	303.25	0.0097	0.1293	-359.1	-21.0736
303.15	0.0099	303.25	0.0097	0.1771	-350.6	-21.0847
			Run	no. 8		
303.25	0.0099	303.25	0.0097	0.0121	-462.2	-21.1443
303.25	0.0099	303.35	0.0097	0.0187	-427.2	-21.0915
303.25	0.0099	303.35	0.0097	0.0227	-417.6	-21.0880
303.25	0.0099	303.35	0.0097	0.0292	-406.9	-21.0855
303.25	0.0099	303.35	0.0097	0.0458	-390.4	-21.0687
303.25	0.0099	303.35	0.0097	0.0663	-378.5	-21.0640
000 07	0.0000	000 07	Run	no. 9	10-1	04.5.55
303.35	0.0099	303.35	0.0097	0.0178	-431.4	-21.1411
303.35	0.0099	303.05	0.0097	0.0208	-422.5	-21.1404

continu	continued from previous page							
T_I	$\bar{m}_{HCl_{I}}$	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{DL-methionine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$		
[K]	[mol kg ⁻¹]	[K]	[mol kg ⁻¹]	[mol kg ⁻¹]	[mV]	[-]		
303.35	0.0099	303.35	0.0097	0.0297	-406.8	-21.1077		
303.35	0.0099	303.25	0.0097	0.0359	-399.6	-21.1068		
303.35	0.0099	303.30	0.0097	0.0340	-360.0	-21.1041		
303.35	0.0033	000.00	0.0037 Bun	no 10	-372.0	-21.1075		
312.95	0.0099	313.05	0.0097	0.0121	-462.9	-20.6267		
312.95	0.0099	313.05	0.0097	0.0187	-426.8	-20.5751		
312.95	0.0099	312.95	0.0097	0.0227	-416.8	-20.5738		
312.95	0.0099	312.95	0.0097	0.0292	-405.8	-20.5726		
312.95	0.0099	312.95	0.0097	0.0458	-389.1	-20.5675		
312.95	0.0099	313.05	0.0097	0.0663	-376.9	-20.5601		
210.05	0.0000	212.05	Run	no. 11	450.4	00 6995		
312.95	0.0099	313.05	0.0097	0.0128	-408.0	-20.6335		
312.95 312.95	0.0099	312.95 312.95	0.0097	0.0278	-381.8	-20.5785		
312.95	0.0099	312.95	0.0097	0.0719	-374.7	-20.5784		
312.95	0.0099	313.15	0.0097	0.1293	-356.6	-20.5494		
312.95	0.0099	313.05	0.0097	0.1771	-347.6	-20.5575		
			Run	no. 12				
313.05	0.0099	313.05	0.0097	0.0178	-431.0	-20.6198		
313.05	0.0099	312.95	0.0097	0.0208	-421.6	-20.5976		
313.05	0.0099	313.15	0.0097	0.0297	-405.5	-20.5756		
313.05	0.0099	313.05	0.0097	0.0359	-398.1	-20.5755		
313.05	0.0099	313.05	0.0097	0.0546	-383.8	-20.5843		
313.03	0.0099	313.15	0.0097 Bup	0.0641 no. 13	-309.8	-20.3048		
323.25	0.0099	323.25	0.0097	0.0178	-430.5	-20.1031		
323.25	0.0099	323.35	0.0097	0.0208	-420.4	-20.0544		
323.25	0.0099	323.35	0.0097	0.0297	-404.2	-20.0596		
323.25	0.0099	323.35	0.0097	0.0359	-396.4	-20.0479		
323.25	0.0099	323.35	0.0097	0.0546	-381.5	-20.0520		
323.25	0.0099	323.35	0.0097	0.0841	-367.3	-20.0473		
000 55	0.0000	000.45	Run	no. 14	469.9	20,0000		
323.55	0.0099	323.45	0.0097	0.0121	-463.2	-20.0988		
323.55	0.0099	323.00	0.0097	0.0187	-420.2	-20.0407		
323.55 323.55	0.0099	323.55 323.55	0.0097	0.0292	-404.5	-20.0379		
323.55	0.0099	323.45	0.0097	0.0458	-387.3	-20.0405		
323.55	0.0099	323.45	0.0097	0.0663	-375.0	-20.0497		
			Run	no. 15				
323.55	0.0099	323.55	0.0097	0.0128	-456.9	-20.1127		
323.55	0.0099	323.55	0.0097	0.0278	-407.0	-20.0519		
323.55	0.0099	323.55	0.0097	0.0579	-379.7	-20.0513		
323.55	0.0099	323.55	0.0097	0.0719	-372.1	-20.0347		
323.00 323 55	0.0099	323.40 323.45	0.0097	0.1295 0.1771	-304.1	-20.0470		
040.00	0.0033	040.40	R110	no. 16	-044.1	-20.0401		
333.35	0.0099	333.35	0.0097	0.0121	-463.4	-19.6200		
333.35	0.0099	333.35	0.0097	0.0187	-425.7	-19.5851		
333.35	0.0099	333.35	0.0097	0.0227	-415.1	-19.5789		
333.35	0.0099	333.35	0.0097	0.0292	-403.7	-19.5884		
333.35	0.0099	333.35	0.0097	0.0458	-386.1	-19.5897		
333.35	0.0099	333.25	0.0097	0.0663	-373.6	-19.6100		
000.05	0.0000	000 0F	Run	no. 17	490.0	10 (000		
333.35 222.2#	0.0099	333.35 222 45	0.0097	0.0178	-430.0	-19.6230		
333 35	0.0099	333.45	0.0097	0.0208	-419.0	-19.0740		
333.35	0.0099	333.45	0.0097	0.0359	-395.1	-19.5767		
333.35	0.0099	333.45	0.0097	0.0546	-379.9	-19.5865		
333.35	0.0099	333.35	0.0097	0.0841	-364.8	-19.5709		
			Run	no. 18				
333.45	0.0099	333.45	0.0097	0.0128	-456.6	-19.6228		
333.45	0.0099	333.45	0.0097	0.0278	-405.6	-19.5747		
333.45	0.0099	333.45	0.0097	0.0579	-377.7	-19.5822		

continued on next page

T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{DL-methionine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
333.45	0.0099	333.35	0.0097	0.0719	-370.2	-19.5821
333.45	0.0099	333.45	0.0097	0.1293	-351.5	-19.5791
333.45	0.0099	333.45	0.0097	0.1771	-341.7	-19.5744
Run no. 19						
343.15	0.0099	343.05	0.0097	0.0121	-464.0	-19.1943
343.15	0.0099	343.15	0.0097	0.0187	-425.6	-19.1641
343.15	0.0099	343.15	0.0097	0.0227	-414.7	-19.1581
343.15	0.0099	343.15	0.0097	0.0292	-402.9	-19.1652
343.15	0.0099	343.05	0.0097	0.0458	-384.9	-19.1753
343.15	0.0099	343.05	0.0097	0.0663	-371.7	-19.1792
Run no. 20						
343.15	0.0099	343.25	0.0097	0.0178	-430.0	-19.1958
343.15	0.0099	343.25	0.0097	0.0208	-418.9	-19.1395
343.15	0.0099	343.25	0.0097	0.0297	-401.6	-19.1409
343.15	0.0099	343.15	0.0097	0.0359	-393.3	-19.1334
343.15	0.0099	343.15	0.0097	0.0546	-377.4	-19.1345
343.15	0.0099	343.05	0.0097	0.0841	-362.6	-19.1436
Run no. 21						
343.25	0.0099	343.25	0.0097	0.0128	-457.3	-19.2008
343.25	0.0099	343.25	0.0097	0.0278	-405.4	-19.1702
343.25	0.0099	343.25	0.0097	0.0579	-376.5	-19.1714
343.25	0.0099	343.25	0.0097	0.0719	-368.9	-19.1704
343.25	0.0099	343.15	0.0097	0.1293	-349.6	-19.1753
343.25	0.0099	343.15	0.0097	0.1771	-339.4	-19.1667
Run no. 22						
353.25	0.0099	353.35	0.0097	0.0208	-419.7	-18.7671
353.25	0.0099	353.35	0.0097	0.0297	-402.0	-18.7717
353.25	0.0099	353.35	0.0097	0.0359	-393.6	-18.7639
353.25	0.0099	353.35	0.0097	0.0546	-377.5	-18.7738
353.25	0.0099	353.35	0.0097	0.0841	-361.7	-18.7598
Run no. 23						
353.35	0.0099	353.25	0.0097	0.0121	-466.1	-18.8218
353.35	0.0099	353.25	0.0097	0.0187	-426.6	-18.7929
353.35	0.0099	353.25	0.0097	0.0227	-414.9	-18.7708
353.35	0.0099	353.25	0.0097	0.0292	-402.8	-18.7794
353.35	0.0099	353.25	0.0097	0.0458	-384.4	-18.7887
353.35	0.0099	353.25	0.0097	0.0663	-370.7	-18.7890
Run no. 24						
353.35	0.0099	353.25	0.0097	0.0128	-458.9	-18.8260
353.35	0.0099	353.35	0.0097	0.0278	-405.9	-18.8007
353.35	0.0099	353.35	0.0097	0.0579	-375.5	-18.7804
353.35	0.0099	353.35	0.0097	0.0719	-367.9	-18.7867
353.35	0.0099	353.25	0.0097	0.1293	-347.9	-18.7870
353.35	0.0099	353.25	0.0097	0.1771	-337.4	-18.7784

continued from previous page
2.9.7 Glycine

Table 2.25: Experimental equilibrium data for glycine measurements

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-] 8246 8559
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8246 8559
293.05 0.0099 293.15 0.0100 0.0393 -427.5 -22.82 293.05 0.0099 293.05 0.0100 0.0660 -411.8 -22.85 293.05 0.0099 293.05 0.0100 0.0824 -406.5 -22.90 293.05 0.0099 293.05 0.0100 0.1597 -388.5 -22.91 293.05 0.0099 293.05 0.0100 0.2407 -377.7 -22.91 293.05 0.0099 293.15 0.0100 0.3471 -368.0 -22.90 293.05 0.0099 293.15 0.0100 0.4049 -364.0 -22.90 293.05 0.0099 293.15 0.0100 0.4049 -364.0 -22.90	$8246 \\ 8559$
293.05 0.0099 293.05 0.0100 0.0660 -411.8 -22.85 293.05 0.0099 293.05 0.0100 0.0824 -406.5 -22.90 293.05 0.0099 293.05 0.0100 0.1597 -388.5 -22.91 293.05 0.0099 293.05 0.0100 0.2407 -377.7 -22.91 293.05 0.0099 293.15 0.0100 0.3471 -368.0 -22.90 293.05 0.0099 293.15 0.0100 0.4049 -364.0 -22.90 Run no. 2	8559
293.05 0.0099 293.05 0.0100 0.0824 -406.5 -22.90 293.05 0.0099 293.05 0.0100 0.1597 -388.5 -22.91 293.05 0.0099 293.05 0.0100 0.2407 -377.7 -22.91 293.05 0.0099 293.15 0.0100 0.3471 -368.0 -22.90 293.05 0.0099 293.15 0.0100 0.3471 -364.0 -22.90 Run no. 2	
293.05 0.0099 293.05 0.0100 0.1597 -388.5 -22.91 293.05 0.0099 293.05 0.0100 0.2407 -377.7 -22.91 293.05 0.0099 293.15 0.0100 0.3471 -368.0 -22.90 293.05 0.0099 293.15 0.0100 0.3471 -364.0 -22.90 293.05 0.0099 293.15 0.0100 0.4049 -364.0 -22.90 Run no. 2	9020
293.05 0.0099 293.05 0.0100 0.2407 -377.7 -22.91 293.05 0.0099 293.15 0.0100 0.3471 -368.0 -22.90 293.05 0.0099 293.15 0.0100 0.4049 -364.0 -22.90 Run no. 2	9145
293.05 0.0099 293.15 0.0100 0.3471 -368.0 -22.90 293.05 0.0099 293.15 0.0100 0.4049 -364.0 -22.90 Run no. 2	9194
293.05 0.0099 293.15 0.0100 0.4049 -364.0 -22.90 Run no. 2	9082
Run no. 2	9080
293.05 0.0099 293.15 0.0100 0.0411 -425.4 -22.79	7987
293.05 0.0099 293.15 0.0100 0.0047 -411.4 -22.80	8084
293.05 0.0099 293.15 0.0100 0.0879 -402.7 -22.81	01//
293.05 0.0099 293.05 0.0100 0.1589 -381.6 -22.87	8138
293.05 0.0099 293.05 0.0100 0.2519 -373.1 -22.80	8038
293.03 0.0099 293.03 0.0100 0.3555 -307.9 -22.87	0100 0779
295.05 0.0099 295.15 0.0100 0.4179 -502.4 -22.87	0113
293.05 0.0099 293.15 0.0100 0.0429 -425.2 -22.84	8471
293.05 0.0099 293.15 0.0100 0.0653 -412.7 -22.87	8706
293.05 0.0099 293.15 0.0100 0.0865 -404.7 -22.87	8790
293.05 0.0099 293.15 0.0100 0.1649 -387.3 -22.89	8947
293.05 0.0099 293.15 0.0100 0.2341 -378.2 -22.90	9037
293.05 0.0099 293.05 0.0100 0.3455 -368.6 -22.93	9334
293.05 0.0099 293.15 0.0100 0.4023 -365.3 -22.95	9531
Run no. 4	
298.25 0.0099 298.25 0.0100 0.0429 -423.4 -22.49	4924
298.25 0.0099 298.25 0.0100 0.0653 -410.2 -22.49	4971
298.25 0.0099 298.25 0.0100 0.0865 -402.1 -22.50	5069
298.25 0.0099 298.15 0.0100 0.1649 -384.5 -22.53	5328
298.25 0.0099 298.35 0.0100 0.2341 -375.1 -22.52	5242
298.25 0.0099 298.25 0.0100 0.3455 -365.3 -22.55	5525
298.25 0.0099 298.25 0.0100 0.4023 -361.7 -22.56	5688
Run no. 5	
298.25 0.0099 298.25 0.0100 0.0393 -425.9 -22.479	4761
298.25 0.0099 298.25 0.0100 0.0660 -409.7 -22.49	4918
298.25 0.0099 298.25 0.0100 0.0824 -403.6 -22.51	5104
298.25 0.0099 298.25 0.0100 0.1597 -385.1 -22.51	5159
298.25 0.0099 298.15 0.0100 0.2407 -374.5 -22.54	5420
298.25 0.0099 298.25 0.0100 0.3471 -365.0 -22.54	5454
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5460
Run no. 6	4 4 17 17
298.25 0.0099 298.25 0.0100 0.0411 -423.7 -22.44	4477
298.25 0.0099 298.25 0.0100 0.0047 -409.4 -22.45	4002
298.25 0.0099 298.35 0.0100 0.0879 -400.3 -22.44	4484
298.25 0.0099 298.25 0.0100 0.1589 -384.2 -22.46	4794
298.25 0.0099 298.35 0.0100 0.2519 -371.6 -22.47	4124
298.25 0.0009 298.25 0.0100 0.3355 -304.7 -22.49 208.25 0.0000 208.25 0.0100 0.4170 250.1 22.50	4987
298.25 0.0099 298.35 0.0100 0.4179 -359.1 -22.30 Bun no. 7	3008
302.95 0.0099 302.85 0.0100 0.0411 -423.7 -22.20	2005
302.95 0.0099 302.95 0.0100 0.0647 -409.0 -22.19	1946
302.95 0.0099 303.05 0.0100 0.0879 -399.7 -22.18	1859
302.95 0.0099 302.95 0.0100 0.1589 -383.2 -22.20	2075
302.95 0.0099 302.95 0.0100 0.2519 -370.9 -22.22	2212
302.95 0.0099 302.95 0.0100 0.3355 -363.3 -22.22	2267^{-}
302.95 0.0099 303.05 0.0100 0.4179 -357.5 -22.22	2247
Run no. 8	
303.05 0.0099 303.05 0.0100 0.0393 -425.2 -22.18	1889
303.05 0.0099 303.05 0.0100 0.0660 -408.6 -22.19	1991

T					(E E)	$l_{\rm L}$ (I	1
	$m_{HCl_{I}}$	1 I I	m _{NaOHII}	$m_{glycine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$	
[K]	[mol kg ⁺]	[K]	[mol kg ⁻]	[mol kg ⁻]	[mV]	[-]	
303.05	0.0099	302.95	0.0100	0.0824	-402.4	-22.2238	
303.05	0.0099	302.95	0.0100	0.1597	-383.3	-22.2175	
303.05	0.0099	302.95	0.0100	0.2407	-372.4	-22.2325	
303.05	0.0099	302.95	0.0100	0.3471	-362.7	-22.2399	
303.05	0.0099	303.05	0.0100	0.4049	-358.8	-22.2431	
000 15	0.0000	000 15	Run no	. 9	100.0	00.0005	
303.15	0.0099	303.15	0.0100	0.0429	-423.2	-22.2205	
303.15	0.0099	303.15	0.0100	0.0653	-409.9	-22.2296	
303.15	0.0099	303.05	0.0100	0.0865	-401.5	-22.2392	
303.15	0.0099	303.05	0.0100	0.1649	-383.6	-22.2583	
303.15	0.0099	303.25	0.0100	0.2341	-373.9	-22.2444	
202.15	0.0099	303.05	0.0100	0.5455	-303.9	-22.2707	
303.15	0.0099	303.00	0.0100 Pup po	0.4025	-300.3	-22.2905	
312.05	0.0000	312.05	0.0100	0.0420	193.9	91 7177	
312.90	0.0033	312.95	0.0100	0.0429	400.4	21.7177	
312.35	0.0033	313.05	0.0100	0.0055	400.6	-21.7240	
312.30	0.0033	313.05	0.0100	0.0805	-400.0	21.7107	
312.90	0.0033	313.05	0.0100	0.1049	-379.1	-21.7273	
312.90	0.0033	312.05	0.0100	0.3455	-572.1	-21.7536	
312.95	0.0033	312.95	0.0100	0.3433	-357.7	-21.7653	
012.00	0.0000	012.00	Bun no.	11	001.1	21.1000	
312.95	0.0099	312.95	0.0100	0.0411	-423.5	-21.6726	
312.95	0.0099	313.05	0.0100	0.0647	-408.1	-21.6590	
312.95	0.0099	313.05	0.0100	0.0879	-398.6	-21.6604	
312.95	0.0099	313.05	0.0100	0.1589	-381.4	-21.6702	
312.95	0.0099	312.95	0.0100	0.2519	-368.6	-21.6861	
312.95	0.0099	312.95	0.0100	0.3355	-360.8	-21.6934	
312.95	0.0099	312.95	0.0100	0.4179	-354.7	-21.6930	
			Run no.	12			
313.05	0.0099	313.05	0.0100	0.0393	-425.1	-21.6697	
313.05	0.0099	313.05	0.0100	0.0660	-408.1	-21.6851	
313.05	0.0099	312.85	0.0100	0.0824	-401.8	-21.7192	
313.05	0.0099	312.85	0.0100	0.1597	-382.4	-21.7248	
313.05	0.0099	312.75	0.0100	0.2407	-371.0	-21.7400	
313.05	0.0099	312.95	0.0100	0.3471	-360.4	-21.7148	
313.05	0.0099	312.95	0.0100	0.4049	-356.4	-21.7247	
222.05	0.0000	222.05	Run no.	0.0411	492.9	01 1746	
322.90	0.0099	323.00 200.05	0.0100	0.0411	-425.2	-21.1740	
322.95	0.0099	322.95	0.0100	0.0047	-407.5	-21.1795	
322.95	0.0099	322.95	0.0100	0.0879	-397.0	-21.1772	
322.90	0.0033	322.95	0.0100	0.1589	-366.2	-21.1049	
322.00	0.0000	322.00	0.0100	0.3355	-358.2	-21.1011	
322.95	0.0099	322.50 322.85	0.0100	0.3355 0.4179	-352.2	-21.2055	
022.00	0.0000	011100	Run no.	14	002.2	2112000	
322.95	0.0099	323.05	0.0100	0.0429	-421.4	-21.1660	
322.95	0.0099	323.05	0.0100	0.0653	-406.8	-21.1594	
322.95	0.0099	323.05	0.0100	0.0865	-397.8	-21.1609	
322.95	0.0099	323.05	0.0100	0.1649	-378.4	-21.1684	
322.95	0.0099	323.05	0.0100	0.2341	-368.4	-21.1784	
322.95	0.0099	323.05	0.0100	0.3455	-357.1	-21.1760	
322.95	0.0099	323.05	0.0100	0.4023	-352.8	-21.1779	
			Run no.	15			
323.15	0.0099	323.05	0.0100	0.0393	-424.6	-21.1700	
323.15	0.0099	323.05	0.0100	0.0660	-406.9	-21.1796	
323.15	0.0099	323.15	0.0100	0.0824	-399.9	-21.1783	
323.15	0.0099	323.15	0.0100	0.1597	-379.5	-21.1708	
323.15	0.0099	323.05	0.0100	0.2407	-367.4	-21.1740	
323.15	0.0099	323.05	0.0100	0.3471	-357.3	-21.1902	
323.15	0.0099	323.05	0.0100	0.4049	-353.0	-21.1939	
			Run no.	16			
333.25	0.0099	333.25	0.0100	0.0411	-422.3	-20.6843	
333.25	0.0099	333.15	0.0100	0.0647	-406.6	-20.7061	
000.20						1	

continu	ied from pre	vious pa	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{glycine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	[mol kg ⁻¹]	[K]	[mol kg ⁻¹]	[mol kg ⁻¹]	[mV]	[-]
333.25	0.0099	333.25 222.05	0.0100	0.0879	-396.4	-20.6989
333.20 222.25	0.0099	333.20 222.05	0.0100	0.1589	-3/1.1	-20.6950
333.2J 333.25	0.0099	333.25	0.0100	0.2319	-303.8	-20.0958
333.20	0.0033	333.15	0.0100	0.3333	-349.5	-20.7152
000.20	0.0000	000.10	Bun no.	17	010.0	20.1200
333.25	0.0099	333.25	0.0100	0.0429	-420.9	-20.6917
333.25	0.0099	333.25	0.0100	0.0653	-405.7	-20.6801
333.25	0.0099	333.25	0.0100	0.0865	-396.3	-20.6775
333.25	0.0099	333.25	0.0100	0.1649	-376.3	-20.6853
333.25	0.0099	333.25	0.0100	0.2341	-365.5	-20.6784
333.25	0.0099	333.25	0.0100	0.3455	-353.9	-20.6780
333.25	0.0099	333.25	0.0100	0.4023	-349.8	-20.6917
000.05	0.0000	000.05	Run no.	18	40.4.1	20 (010
333.35 222.25	0.0099	333.25	0.0100	0.0393	-424.1	-20.6910
333.30 222.25	0.0099	333.30 222.05	0.0100	0.0660	-405.7	-20.6901
000.00 999.95	0.0099	222.20 222.25	0.0100	0.0624	-396.4	-20.0970
333.35	0.0033	333.25	0.0100	0.1397	-364.9	-20.0803
333.35	0.0099	333.25	0.0100	0.3471	-354.4	-20.0013
333.35	0.0099	333.25	0.0100	0.4049	-349.8	-20.6992
	0.0000	000.20	Run no.	19	0.000	
343.15	0.0099	343.05	0.0100	0.0411	-422.4	-20.2742
343.15	0.0099	343.05	0.0100	0.0647	-405.7	-20.2722
343.15	0.0099	343.05	0.0100	0.0879	-395.2	-20.2704
343.15	0.0099	343.05	0.0100	0.1589	-376.2	-20.2748
343.15	0.0099	343.05	0.0100	0.2519	-361.9	-20.2759
343.15	0.0099	343.05	0.0100	0.3355	-353.3	-20.2816
			Run no.	20		
343.15	0.0099	343.15	0.0100	0.0429	-419.9	-20.2403
343.15	0.0099	343.15	0.0100	0.0653	-403.9	-20.2168
343.15	0.0099	343.05	0.0100	0.0800	-393.9	-20.2084
343.15	0.0099	343.10 343.15	0.0100	0.1049	-373.4	-20.2144
343.15	0.0099	343.15	0.0100	0.2341	-303.0	20.2318
343.15 343.15	0.0099	343.25 343.25	0.0100	0.3433	-346.2	-20.2148
010110	0.0000	010.20	Run no.	21	01012	2012100
343.15	0.0099	343.25	0.0100	0.0393	-424.2	-20.2673
343.15	0.0099	343.25	0.0100	0.0660	-405.2	-20.2699
343.15	0.0099	343.25	0.0100	0.0824	-397.5	-20.2653
343.15	0.0099	343.25	0.0100	0.1597	-375.6	-20.2498
343.15	0.0099	343.15	0.0100	0.2407	-362.8	-20.2543
343.15	0.0099	343.15	0.0100	0.3471	-352.6	-20.2883
343.15	0.0099	343.15	0.0100	0.4049	-347.7	-20.2807
252 55	0.0000	959 55	Run no.	22	410.0	10 0059
303.00 353 55	0.0099	303.00 359 55	0.0100	0.0429	-419.8	-19.8253
353.00 353.55	0.0099	353 EE	0.0100	0.0000	-403.7	-19.0143 10.9075
353 55	0.0099	353.65	0.0100	0.0805	-393.0 _372.6	-19.0070
353.55	0.0099	353.65	0.0100	0.2341	-361 7	-19.8293
353.55	0.0099	353.65	0.0100	0.3455	-348.9	-19.8128
353.55	0.0099	353.65	0.0100	0.4023	-344.1	-19.8117
			Run no.	23		· · ·
353.65	0.0099	353.65	0.0100	0.0411	-422.2	-19.8443
353.65	0.0099	353.65	0.0100	0.0647	-404.8	-19.8361
353.65	0.0099	353.65	0.0100	0.0879	-393.8	-19.8285
353.65	0.0099	353.65	0.0100	0.1589	-373.9	-19.8226
353.65	0.0099	353.65	0.0100	0.2519	-359.3	-19.8283
959 55	0.0000	050 55	Run no.	24	400 5	10.0050
353.75	0.0099	353.75	0.0100	0.0393	-423.5	-19.8259
303.70 353 75	0.0099	353.73 359 75	0.0100	0.0000	-404.2	-19.03/0
353.75	0.0099	353.75	0.0100	0.0624	-373.8	-19.8243
353.75 353.75	0.0099	353.75	0.0100	0.2407	-360.3	-19.8210
000.10	0.0000	555.10	0.0100	0.2101	000.0	10.0100

continued on next page

continued from previous page

T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{glycine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
353.75	0.0099	353.75	0.0100	0.3471	-349.5	-19.8352
353.75	0.0099	353.75	0.0100	0.4049	-344.8	-19.8392

2.9.8 L-phenylalanine

Table 2.26: Experimental equilibrium data for L-phenylalanine measurements

T_I	$\bar{m}_{HCl_{I}}$	T_{II}	\bar{m}_{NaOHII}	$\bar{m}_{L-nhenulalanine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
		ι]	Ru	1 no. 1	[]	
292.85	0.0098	292.85	0.0099	0.0263	-412.2	-21.6633
292.85	0.0098	292.85	0.0099	0.0321	-405.8	-21.7146
292.85	0.0098	292.85	0.0099	0.0492	-390.8	-21.6886
292.85	0.0098	292.85	0.0099	0.0833	-374.6	-21.6721
292.85	0.0098	292.75	0.0099	0.1067	-367.6	-21.6776
292.85	0.0098	292.75	0.0099	0.1700	-355.0	-21.6814
			Rui	n no. 2		
293.25	0.0098	293.15	0.0099	0.0387	-398.3	-21.6606
293.25	0.0098	293.15	0.0099	0.0437	-393.5	-21.6307
293.25	0.0098	293.25	0.0099	0.0632	-381.9	-21.6216
293.25	0.0098	293.15	0.0099	0.0876	-372.3	-21.6246
293.25	0.0098	293.15	0.0099	0.1366	-359.3	-21.5982
			Rui	1 no. 3		
298.05	0.0098	298.05	0.0099	0.0222	-421.3	-21.4475
298.05	0.0098	298.15	0.0099	0.0387	-397.7	-21.3746
298.05	0.0098	298.15	0.0099	0.0607	-382.7	-21.3566
298.05	0.0098	298.05	0.0099	0.0892	-371.2	-21.3600
298.05	0.0098	298.05	0.0099	0.1028	-366.9	-21.3512
298.05	0.0098	298.05	0.0099	0.1237	-361.5	-21.3439
200.00	0.0000	200.00	Ru	1 no. 4	00110	2110100
298.25	0.0098	298.35	0.0099	0.0321	-404.6	-21.3724
298.25	0.0098	298.25	0.0099	0.0492	-389.7	-21.3675
298.25	0.0098	298.35	0.0099	0.0653	-380.3	-21.3393
298.25	0.0098	298.25	0.0099	0.0833	-372.8	-21.3353
298.25	0.0098	298.15	0.0099	0.1067	-365.8	-21.3456
298.25	0.0098	298.25	0.0099	0.1227	-361.7	-21.3329
200.20	0.0000	200.20	Bu	1 no 5	00111	11.0020
298.45	0.0098	298.45	0.0099	0.0263	-412.5	-21.3708
298.45	0.0098	298.45	0.0099	0.0387	-398.1	-21.3737
298.45	0.0098	298.35	0.0099	0.0437	-394.4	-21.3963
298.45	0.0098	298.35	0.0099	0.0632	-382.0	-21.3702
298.45	0.0098	298.35	0.0099	0.0876	-371.9	-21.3541
298.45	0.0098	298.35	0.0099	0.1366	-359.0	-21.3406
200.10	0.0000	200.00	Ru	1 no. 6	00010	2110100
302.85	0.0098	302.85	0.0099	0.0222	-420.9	-21.1743
302.85	0.0098	302.95	0.0099	0.0387	-396.8	-21.0968
302.85	0.0098	302.95	0.0099	0.0607	-381.6	-21.0804
302.85	0.0098	302.95	0.0099	0.0892	-369.7	-21.0695
302.85	0.0098	302.85	0.0099	0.1028	-365.5	-21.0730
302.85	0.0098	302.95	0.0099	0.1237	-360.0	-21.0595
002.00	0.0000	002.00	Ru	1 no. 7	00010	21.0000
302.95	0.0098	303.05	0.0099	0.0321	-404.0	-21.1073
302.95	0.0098	302.95	0.0099	0.0492	-388.8	-21.0996
302.95	0.0098	302.95	0.0099	0.0653	-379.6	-21.0908
302.95	0.0098	302.85	0.0099	0.0833	-372.2	-21.0950
302.95	0.0098	302.85	0.0099	0.1067	-364.7	-21.0843
302.95	0.0098	303.05	0.0099	0.1227	-360.5	-21.0647
002.00	0.0000		R.111	1 no. 8	0.00.0	
303.15	0.0098	303.05	0.0099	0.0263	-412.2	-21.1189
303.15	0.0098	303.15	0.0099	0.0387	-397.1	-21.0973
303.15	0.0098	303.05	0.0099	0.0437	-393.4	-21.1219
303.15	0.0098	303.05	0.0099	0.0632	-380.8	-21.0957
303.15	0.0098	303.05	0.0099	0.0876	-370.4	-21.0742
303.15	0.0098	303.15	0.0099	0.1366	-357.2	-21.0513
			Rui	n no. 9		
312.95	0.0098	313.05	0.0099	0.0263	-410.9	-20.5686
312.95	0.0098	313.05	0.0099	0.0387	-395.4	-20.5566
312.95	0.0098	313.05	0.0099	0.0437	-391.4	-20.5685

continu	ied from pre	vious pa	ge			
T_I	$\bar{m}_{HCl_{I}}$	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{L-phenylalanine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	[mol kg ⁻¹]	[K]	[mol kg ⁻¹]	[mol kg ⁻¹]	[mV]	[-]
312.95	0.0098	313.05	0.0099	0.0632	-378.4	-20.5427
312.95	0.0098	312.95	0.0099	0.0876	-367.9	-20.5357
312.90	0.0098	313.00 313.05	0.0099	0.1300	-504.4	-20.5180
512.55	0.0038	313.05	0.0033 Bun	no 10	-041.0	-20.3070
313.05	0.0098	313.05	0.0099	0.0222	-420.2	-20.6276
313.05	0.0098	313.05	0.0099	0.0387	-395.5	-20.5637
313.05	0.0098	313.05	0.0099	0.0607	-379.8	-20.5474
313.05	0.0098	313.05	0.0099	0.0892	-367.5	-20.5364
313.05	0.0098	313.05	0.0099	0.1028	-362.8	-20.5208
313.05	0.0098	313.15	0.0099	0.1237	-357.2	-20.5107
313.05	0.0098	313.15	0.0099	0.1470	-352.3	-20.5149
919 15	0.0008	212.05	A OOOO	no. 11	402.1	20 5864
313.10	0.0098	313.00 313.05	0.0099	0.0521	-405.1	-20.3804
313.15	0.0098	313.05	0.0099	0.0492	-377 4	-20.5378
313 15	0.0098	313.10 313.05	0.0099	0.0003	-369.6	-20.5381
313.15	0.0098	313.05	0.0099	0.1067	-361.9	-20.5294
313.15	0.0098	313.05	0.0099	0.1227	-357.9	-20.5338
313.15	0.0098	313.15	0.0099	0.1524	-351.2	-20.5141
			Run	no. 12		
322.75	0.0098	322.85	0.0099	0.0263	-409.9	-20.0749
322.75	0.0098	322.75	0.0099	0.0387	-394.0	-20.0713
322.75	0.0098	322.85	0.0099	0.0437	-389.7	-20.0714
322.75	0.0098	322.75	0.0099	0.0632	-376.4	-20.0548
322.75	0.0098	322.85	0.0099	0.0876	-365.6	-20.0379
322.75	0.0098	322.85	0.0099	0.1366	-351.7	-20.0265
322.75	0.0098	322.85	0.0099	0.1700	-345.0	-20.0200
322.85	0.0098	322.85	0.0099	0 0222	-419 4	-20 1308
322.85	0.0098	322.85	0.0099	0.0387	-394.1	-20.0728
322.85	0.0098	322.85	0.0099	0.0607	-377.8	-20.0525
322.85	0.0098	322.85	0.0099	0.0892	-365.1	-20.0410
322.85	0.0098	322.85	0.0099	0.1028	-360.3	-20.0271
322.85	0.0098	322.85	0.0099	0.1237	-354.4	-20.0179
322.85	0.0098	322.85	0.0099	0.1470	-349.3	-20.0203
			Run	no. 14		
322.95	0.0098	322.85	0.0099	0.0321	-402.1	-20.1014
322.95	0.0098	322.95	0.0099	0.0492	-385.4	-20.0638
322.95	0.0098	322.95	0.0099	0.0653	-375.4	-20.0480
322.90	0.0098	322.90	0.0099	0.0855	-307.4	-20.0425
322.95 322.95	0.0098	322.85 322.85	0.0099	0.1007	-355.3	-20.0307
322.95	0.0098	322.85	0.0099	0.1524	-348.5	-20.0315
	0.0000	00	Run	no. 15	0.000	
332.75	0.0098	332.85	0.0099	0.0263	-408.8	-19.5989
332.75	0.0098	332.75	0.0099	0.0387	-392.2	-19.5877
332.75	0.0098	332.85	0.0099	0.0437	-388.1	-19.5996
332.75	0.0098	332.85	0.0099	0.0632	-374.3	-19.5746
332.75	0.0098	332.85	0.0099	0.0876	-363.0	-19.5573
332.75	0.0098	332.85	0.0099	0.1366	-348.7	-19.5469
332.75	0.0098	332.85	0.0099	0.1700	-342.2	-19.5546
222.05	0.0000	222 OF	Kun	no. 16	410.9	10 6719
332.95 332.05	0.0098	332.95 332.05	0.0099	0.0222	-419.2	-19.0718
332.90 332.95	0.0098	332.90 332.95	0.0099	0.0387	-393.0 _376.1	-19.0097
332.95	0.0098	332.95	0.0099	0.0892	-362 7	-19.5641
332.95	0.0098	332.95	0.0099	0.1028	-358.0	-19.5589
			Run	no. 17		
333.05	0.0098	332.95	0.0099	0.0321	-401.1	-19.6332
333.05	0.0098	333.15	0.0099	0.0492	-383.7	-19.5844
333.05	0.0098	333.15	0.0099	0.0653	-373.7	-19.5796
333.05	0.0098	333.05	0.0099	0.0833	-365.3	-19.5737
333.05	0.0098	333.05	0.0099	0.1067	-357.1	-19.5647

continued on next page

comm	ieu nom pre	vious pa	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{L-phenylalanine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
333.05	0.0098	332.95	0.0099	0.1227	-352.9	-19.5758
333.05	0.0098	333.05	0.0099	0.1524	-346.1	-19.5679
			Run	no. 18		
342.95	0.0098	343.05	0.0099	0.0263	-407.1	-19.1230
342.95	0.0098	342.95	0.0099	0.0387	-390.8	-19.1389
342.95	0.0098	343.05	0.0099	0.0437	-385.7	-19.1214
342.95	0.0098	343.05	0.0099	0.0632	-372.2	-19.1208
342.95	0.0098	343.05	0.0099	0.0876	-360.4	-19.0983
342.95	0.0098	343.05	0.0099	0.1366	-345.5	-19.0824
342.95	0.0098	342.95	0.0099	0.1700	-338.6	-19.0878
			Run	no. 19		
343.05	0.0098	343.15	0.0099	0.0387	-391.6	-19.1594
343.05	0.0098	342.95	0.0099	0.0607	-374.5	-19.1563
343.05	0.0098	342.95	0.0099	0.0892	-360.8	-19.1376
343.05	0.0098	342.95	0.0099	0.1028	-356.1	-19.1372
343.05	0.0098	342.95	0.0099	0.1237	-349.8	-19.1268
343.05	0.0098	342.95	0.0099	0.1470	-344.5	-19.1332
			Run	no. 20		
343.15	0.0098	343.15	0.0099	0.0321	-400.1	-19.1880
343.15	0.0098	343.15	0.0099	0.0492	-382.2	-19.1506
343.15	0.0098	343.15	0.0099	0.0653	-371.9	-19.1457
343.15	0.0098	343.25	0.0099	0.0833	-363.2	-19.1285
343.15	0.0098	343.25	0.0099	0.1067	-354.6	-19.1145
343.15	0.0098	343.25	0.0099	0.1227	-350.1	-19.1150
343.15	0.0098	343.05	0.0099	0.1524	-342.8	-19.1111
			Run	no. 21		
353.15	0.0098	353.05	0.0099	0.0387	-390.9	-18.773
353.15	0.0098	353.15	0.0099	0.0607	-373.3	-18.7553
353.15	0.0098	353.15	0.0099	0.0892	-358.7	-18.7204
353.15	0.0098	353.15	0.0099	0.1028	-354.0	-18.7246
353.15	0.0098	353.05	0.0099	0.1237	-347.7	-18.7248
353.15	0.0098	352.95	0.0099	0.1470	-342.1	-18.7308
			Run	no. 22		
353.15	0.0098	353.25	0.0099	0.0263	-407.7	-18.7510
353.15	0.0098	353.25	0.0099	0.0387	-390.1	-18.7349
353.15	0.0098	353.25	0.0099	0.0437	-385.5	-18.7438
353.15	0.0098	353.25	0.0099	0.0632	-371.1	-18.7268
353.15	0.0098	353.25	0.0099	0.1366	-344.4	-18.7144
353.15	0.0098	353.25	0.0099	0.1700	-337.2	-18.7122
			Run	no. 23		
353.25	0.0098	353.25	0.0099	0.0321	-399.5	-18.7872
353.25	0.0098	353.35	0.0099	0.0492	-380.7	-18.7327
353.25	0.0098	353.25	0.0099	0.0653	-370.2	-18.7359
353.25	0.0098	353.35	0.0099	0.0833	-361.0	-18.7109
353.25	0.0098	353.35	0.0099	0.1067	-352.3	-18.7019
353.25	0.0098	353.35	0.0099	0.1227	-348.0	-18.7133
353.25	0.0098	353.35	0.0099	0.1524	-340.3	-18.6943

continued from previous page

2.9.9 L-proline

Table 2.27: Experimental equilibrium data for L-proline measurements

T_I	\bar{m}_{HCl_I}	T_{II}	\bar{m}_{NaOHII}	$\bar{m}_{L-proline}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	[mol kg ^{-f}]	$[mol kg^{-1}]$	[mV]	[-]
			Run n	o. 1		
292.65	0.0099	292.65	0.0096	0.0199	-506.6	-24.8468
292.65	0.0099	292.65	0.0096	0.0408	-480.9	-24.8796
292.65	0.0099	292.75	0.0096	0.0855	-458.4	-24.8563
292.65	0.0099	292.65	0.0096	0.2688	-426.3	-24.8139
292.65	0.0099	292.65	0.0096	0.4335	-413.5	-24.7976
292.65	0.0099	292.65	0.0096	0.6366	-403.0	-24.7724
292.65	0.0099	292.75	0.0096	0.8823	-394.6	-24.7633
			Run n	o. 2		
292.85	0.0099	292.85	0.0096	0.0169	-513.8	-24.8107
292.85	0.0099	292.75	0.0096	0.0408	-481.1	-24.8825
292.85	0.0099	292.75	0.0096	0.0814	-460.1	-24.8716
292.85	0.0099	292.75	0.0096	0.2420	-429.8	-24.8392
292.85	0.0099	292.75	0.0096	0.4049	-415.9	-24.8185
292.80	0.0099	292.75	0.0096	0.0309	-403.4	-24.7845
292.83	0.0099	292.13	0.0090	0.8792	-394.0	-24.7020
202.05	0.0000	202.05	0.0006	0. 0	515 /	94 8141
292.95	0.0099	292.93	0.0096	0.0104	-010.4	-24.0141
292.95	0.0099	292.85	0.0090	0.0417	-460.0	-24.8831
292.95	0.0099	292.85	0.0090	0.0801	428.0	-24.8700
292.95	0.0099	292.85	0.0090	0.2008	-415.1	-24.8060
292.95	0.0099	292.85	0.0096	0.4170	-403.3	-24.8000
202.00	0.0000	202.00	0.0096	0.8666	-305.6	-24.7818
202.00	0.0000	202.00	Bun n	0.0000	000.0	21.1010
298.05	0.0099	298.15	0.0096	0.0169	-514.7	-24 4932
298.05	0.0099	298.15	0.0096	0.0408	-481.9	-24.5680
298.05	0.0099	298.05	0.0096	0.0814	-460.8	-24.5743
298.05	0.0099	298.05	0.0096	0.2420	-429.9	-24.5392
298.05	0.0099	297.95	0.0096	0.4049	-415.7	-24.5232
298.05	0.0099	298.15	0.0096	0.6369	-403.0	-24.4771
298.05	0.0099	298.05	0.0096	0.8792	-394.3	-24.4711
			Run n	o. 5		
298.15	0.0099	298.05	0.0096	0.0164	-516.4	-24.5167
298.15	0.0099	298.15	0.0096	0.0417	-481.4	-24.5771
298.15	0.0099	298.15	0.0096	0.0801	-461.5	-24.5764
298.15	0.0099	298.05	0.0096	0.2608	-427.9	-24.5401
298.15	0.0099	298.25	0.0096	0.4176	-414.8	-24.5012
298.15	0.0099	298.05	0.0096	0.6446	-403.1	-24.5007
298.15	0.0099	298.05	0.0096	0.8666	-395.0	-24.4850
			Run n	o. 6		
298.15	0.0099	298.25	0.0096	0.0199	-507.6	-24.5150
298.15	0.0099	298.15	0.0096	0.0408	-481.8	-24.5651
298.15	0.0099	298.15	0.0096	0.0855	-459.0	-24.5525
298.15	0.0099	298.15	0.0096	0.2688	-426.5	-24.5101
298.15	0.0099	298.25	0.0096	0.4335	-413.3	-24.4810
298.15	0.0099	298.35	0.0096	0.6366	-402.6	-24.4494
298.15	0.0099	298.45	0.0096	0.8823	-393.7	-24.4274
000 17	0.0000	000 07	Run n	0.7		
303.15	0.0099	303.05	0.0096	0.0164	-517.5	-24.2389
303.15	0.0099	303.05	0.0096	0.0417	-482.3	-24.3118
303.15	0.0099	303.15	0.0096	0.0801	-461.9	-24.2962
303.15	0.0099	303.15	0.0096	0.2608	-427.8	-24.2551
303.15	0.0099	303.25	0.0096	0.4176	-414.3	-24.2160
303.15	0.0099	303.15	0.0096	0.6446	-402.3	-24.2050
202.05	0.0000	202.25	Kun n	0. 8	515 9	94 9099
303.23 202.2⊑	0.0099	303.30 202.1F	0.0090	0.0109	-010.0	-24.2026
303.20	0.0099	303.10	0.0090	0.0408	-403.0	-24.3032 _24.2074
000.40	0.0033	000.10	0.0030	0.0014		-47.4314

continu	ued from pre	vious pa	ge			
T_{I}	$\bar{m}_{HCl_{I}}$	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{L-proline}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	[mol kg ⁻¹]	[K]	[mol kg ⁻¹]	[mol kg ⁻¹]	[mV]	[-]
303.25	0.0099	303.25	0.0096	0.4049	-415.3	-24.2239
303.25	0.0099	303.25	0.0096	0.6369	-402.6	-24.1992
303.25	0.0099	303.15	0.0096	0.8792	-393.8	-24.1949
303 25	0 0000	303 25	0 0096	0.0100	-508.6	-24 2359
303.25	0.0099	303.25	0.0090	0.0133	482.3	-24.2009
303.25	0.0099	303.35	0.0090	0.0408	-459.3	-24.2033
303.25	0.0000	303.35	0.0096	0.0000	-405.5	-24.2070
303.25	0.0099	303.35	0.0090	0.2008	-413.0	-24.2109
303.25	0.0099	303.35	0.0096	0.6366	-401 7	-24 1580
303.25	0.0099	303.35	0.0096	0.8823	-392.7	-24.1442
			Run no	. 10		
313.15	0.0099	313.25	0.0096	0.0164	-519.0	-23.6640
313.15	0.0099	313.05	0.0096	0.0417	-483.6	-23.7735
313.15	0.0099	313.05	0.0096	0.0801	-462.7	-23.7693
313.15	0.0099	313.15	0.0096	0.2608	-427.6	-23.7251
313.15	0.0099	313.25	0.0096	0.4176	-413.5	-23.6805
313.15	0.0099	313.15	0.0096	0.6446	-401.1	-23.6689
313.15	0.0099	313.05	0.0096	0.8666	-393.2	-23.6816
010.15	0.0000	010.05	Run no	. 11	71 0 0	20.0200
313.15	0.0099	313.25	0.0096	0.0169	-516.6	-23.6209
313.15	0.0099	313.25	0.0096	0.0408	-483.6	-23.7318
313.15	0.0099	313.25	0.0096	0.0814	-461.5	-23.7304
313.15	0.0099	313.25	0.0096	0.6369	-400.3	-23.6211
313.10	0.0099	313.20	0.0090 Bup po	12	-391.2	-23.0103
313 35	0.0099	313 25	0.0096	0.0199	-510.5	-23 6988
313 35	0.0099	313 45	0.0096	0.0408	-483.4	-23 7128
313.35	0.0099	313.45	0.0096	0.0855	-459.8	-23.7108
313.35	0.0099	313.35	0.0096	0.2688	-425.8	-23.6794
313.35	0.0099	313.35	0.0096	0.4335	-411.9	-23.6557
313.35	0.0099	313.35	0.0096	0.6366	-400.5	-23.6245
313.35	0.0099	313.35	0.0096	0.8823	-390.9	-23.5994
			Run no	. 13		
323.05	0.0099	323.05	0.0096	0.0199	-512.1	-23.1908
323.05	0.0099	323.05	0.0096	0.0408	-485.1	-23.2465
323.05	0.0099	323.05	0.0096	0.0855	-460.9	-23.2469
323.05	0.0099	323.05	0.0096	0.2688	-425.8	-23.2063
323.05	0.0099	322.95	0.0096	0.4335	-411.5	-23.1892
323.05	0.0099	322.95	0.0096	0.6366	-400.0	-23.1670
323.05	0.0099	322.95	0.0096	0.8823	-390.5	-23.1560
202.05	0.0000	202.05	Run no	0.0164	520.2	22 1410
323.00 323.05	0.0099	323.00 323.05	0.0090	0.0104	-520.5 -484-1	-20.1410 -23.2375
323.05 323.05	0.0099	323.05	0.0096	0.0801	-462 7	-23.2375
323.05	0.0099	323.05	0.0096	0.2608	-426.6	-23.2038
323.05	0.0099	323.05	0.0096	0.4176	-412.6	-23.1848
323.05	0.0099	323.15	0.0096	0.6446	-399.7	-23.1576
323.05	0.0099	323.05	0.0096	0.8666	-390.6	-23.1359
			Run no	. 15		
323.05	0.0099	323.05	0.0096	0.0169	-519.1	-23.1495
323.05	0.0099	323.05	0.0096	0.0408	-485.1	-23.2466
323.05	0.0099	323.15	0.0096	0.0814	-462.2	-23.2330
323.05	0.0099	323.15	0.0096	0.2420	-428.8	-23.1994
323.05	0.0099	323.15	0.0096	0.4049	-413.3	-23.1726
323.05	0.0099	323.05	0.0096	0.6369	-400.1	-23.1654
323.05	0.0099	323.05	0.0096	0.8792	-390.3	-23.1396
000 07	0.0000	000 07	Run no	. 16	.	
333.25	0.0099	333.25	0.0096	0.0199	-513.8	-22.6945
333.25	0.0099	333.35	0.0096	0.0408	-486.5	-22.7582
333.25	0.0099	333.15 222.05	0.0096	0.0855	-461.6	-22.7715
333.25 222 05	0.0099	333.25 222 1 E	0.0096	0.2088	-425.2	-22.(175
333.25	0.0099	333.15	0.0096	0.4335	-410.8	-22.(123
			× 11 10 10 0			

comm	ieu nom pre	evious pa	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{L-proline}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	[mol kg ⁻¹]	$[mol kg^{-1}]$	[mV]	[-]
333.25	0.0099	333.35	0.0096	0.0164	-522.1	-22.6359
333.25	0.0099	333.25	0.0096	0.0417	-485.6	-22.7600
333.25	0.0099	333.35	0.0096	0.0801	-463.5	-22.7523
333.25	0.0099	333.25	0.0096	0.2608	-426.5	-22.7316
333.25	0.0099	333.35	0.0096	0.4176	-411.7	-22.6945
333.25	0.0099	333.25	0.0096	0.6446	-398.6	-22.6856
333.25	0.0099	333.25	0.0096	0.8666	-389.4	-22.6647
			Run no	. 18		
333.35	0.0099	333.25	0.0096	0.0169	-521.0	-22.6576
333.35	0.0099	333.35	0.0096	0.0408	-486.7	-22.7666
333.35	0.0099	333.25	0.0096	0.0814	-463.2	-22.7682
333.35	0.0099	333.25	0.0096	0.2420	-428.7	-22.7319
333.35	0.0099	333.25	0.0096	0.4049	-412.6	-22.7010
333.35	0.0099	333.25	0.0096	0.6369	-399.1	-22.6920
333.35	0.0099	333.25	0.0096	0.8792	-389.1	-22.6700
			Run no	. 19		
343.65	0.0099	343.65	0.0096	0.0164	-522.9	-22.1199
343.65	0.0099	343.75	0.0096	0.0417	-486.1	-22.2601
343.65	0.0099	343.75	0.0096	0.0801	-463.5	-22.2645
343.65	0.0099	343.75	0.0096	0.2608	-425.1	-22.2296
343.65	0.0099	343.75	0.0096	0.4176	-410.3	-22.2137
343.65	0.0099	343.75	0.0096	0.6446	-396.5	-22.1895
343.65	0.0099	343.75	0.0096	0.8666	-387.1	-22.1717
-			Run no	. 20		
343.75	0.0099	343.65	0.0096	0.0169	-521.2	-22.1123
343.75	0.0099	343.75	0.0096	0.0408	-487.0	-22.2648
343.75	0.0099	343.65	0.0096	0.0814	-463.1	-22.2771
343.75	0.0099	343.75	0.0096	0.2420	-427.7	-22.2411
343.75	0.0099	343.75	0.0096	0.4049	-411.5	-22.2239
343.75	0.0099	343.75	0.0096	0.6369	-397.4	-22.2090
343.75	0.0099	343.75	0.0096	0.8792	-386.9	-22.1807
			Run no	. 21		
354.15	0.0099	354.25	0.0096	0.0169	-522.5	-21.6251
354.15	0.0099	354.05	0.0096	0.0408	-488.0	-21.8213
354.15	0.0099	354.05	0.0096	0.0814	-463.9	-21.8445
354.15	0.0099	354.05	0.0096	0.2420	-427.8	-21.8257
354.15	0.0099	354.05	0.0096	0.4049	-411.0	-21.8047
354.15	0.0099	354.15	0.0096	0.6369	-396.3	-21.7790
354.15	0.0099	354.05	0.0096	0.8792	-385.9	-21.7692
			Run no	. 22		
354.35	0.0099	354.45	0.0096	0.0164	-524.0	-21.6144
354.35	0.0099	354.45	0.0096	0.0417	-486.9	-21.7914
354.35	0.0099	354.35	0.0096	0.0801	-464.0	-21.8144
354.35	0.0099	354.35	0.0096	0.4176	-409.5	-21.7745
354.35	0.0099	354.25	0.0096	0.6446	-395.8	-21.7724
354.35	0.0099	354.25	0.0096	0.8666	-385.9	-21.7476

continued from previous page

2.9.10 L-glutamic acid

Table 2.28: Experimental equilibrium data for L-glutamic acid measurements

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T_I	muci.	T_{II}	m NaOH	mu alutamiagaid	$(E_I - E_{II})$	$ln(K_{2,omp})$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol k a^{-1}]$	[mV]	[_]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[IIIOI Kg]	[11]				[-]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202.05	0.0101	202.05	A OOOD	no. 1 0.0057	4771 4	22 2020
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	292.95	0.0092	0.0057	-471.4	-23.3020
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	293.05	0.0279	0.0105	-471.9	-23.2364
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	292.95	0.0504	0.054	-402.0	-23.3004
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	292.95	0.0790	0.0500	-442.4	-25.4510
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	295.05	0.0101	295.05	0.1042 Dum	0.0050	-402.9	-25.4944
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202.05	0.0101	202.05	0.0002	0.0055	472.0	22.2656
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	293.05	0.0092	0.0055	-473.9	-23.2000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	293.05	0.0279	0.0174	-404.0	-23.2841
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	293.05	0.0394	0.0224	-478.3	-23.2280
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	292.95	0.0504	0.0317	-460.1	-23.3193
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	293.05	0.0790	0.0438	-404.1	-23.3424
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	293.05	0.0101	293.05	0.1042	0.0574	-483.2	-23.4210
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000 15	0.0101	202.05	Run	no. 3	470.7	02.0402
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	0.0101	298.05	0.0092	0.0057	-4/2./	-23.0483
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	0.0101	298.15	0.0279	0.0165	-472.8	-22.9640
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	0.0101	298.15	0.0564	0.0314	-484.0	-23.0315
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	298.15	0.0101	298.15	0.0796	0.0560	-442.6	-23.1618
Run no. 4 298.15 0.0101 298.15 0.0092 0.0058 -467.7 -23.0324 298.15 0.0101 298.15 0.0196 0.0119 -468.1 -22.8900 298.15 0.0101 298.15 0.0796 0.0462 -473.1 -23.1264 298.15 0.0101 298.15 0.0092 0.0573 -484.6 -23.0349 298.25 0.0101 298.25 0.0092 0.0055 -475.7 -23.0349 298.25 0.0101 298.25 0.0564 0.0317 -482.2 -23.0756 298.25 0.0101 298.25 0.0564 0.0317 -485.0 -23.1794 298.25 0.0101 298.15 0.0796 0.0438 -485.9 -23.0998 298.25 0.0101 303.25 0.0092 0.0058 -468.2 -22.7553 303.15 0.0101 303.05 0.0196 0.0119 -469.6 -22.6647 303.15 0.0101 303.05 0.	298.15	0.0101	298.15	0.1042	0.0636	-463.4	-23.2109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Run	no. 4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.15	0.0101	298.15	0.0092	0.0058	-467.7	-23.0324
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	0.0101	298.15	0.0196	0.0119	-468.1	-22.8900
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	0.0101	298.15	0.0564	0.0306	-490.6	-23.0031
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	298.15	0.0101	298.15	0.0796	0.0462	-473.1	-23.1264
Run no. 5 298.25 0.0101 298.25 0.0092 0.0174 -465.4 -23.0275 298.25 0.0101 298.15 0.0394 0.0224 -479.9 -22.9806 298.25 0.0101 298.15 0.0796 0.0438 -485.9 -23.0798 298.25 0.0101 298.15 0.1042 0.0574 -485.0 -23.1794 Run no. 6 303.15 0.0101 303.25 0.0092 0.0058 -468.2 -22.7553 303.15 0.0101 303.05 0.0564 0.0306 -492.0 -22.7653 303.15 0.0101 303.05 0.0564 0.0306 -492.0 -22.7653 303.15 0.0101 303.05 0.1042 0.0573 -486.1 -22.9071 Run no. 7 303.15 0.0101 303.15 0.2779 0.0174 -466.0 -22.7175 303.15 0.0101 303.15 0.0279 0.0174 -486.0	298.15	0.0101	298.15	0.1042	0.0573	-484.6	-23.1398
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Run	no. 5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.25	0.0101	298.15	0.0092	0.0055	-475.7	-23.0349
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.25	0.0101	298.25	0.0279	0.0174	-465.4	-23.0275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.25	0.0101	298.15	0.0394	0.0224	-479.9	-22.9806
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.25	0.0101	298.25	0.0564	0.0317	-482.2	-23.0756
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.25	0.0101	298.15	0.0796	0.0438	-485.9	-23.0998
Run no. 6 303.15 0.0101 303.25 0.0092 0.0058 -468.2 -22.7553 303.15 0.0101 303.05 0.0196 0.0119 -469.6 -22.6647 303.15 0.0101 303.05 0.0564 0.0306 -492.0 -22.7653 303.15 0.0101 303.05 0.0796 0.0462 -474.2 -22.8829 303.15 0.0101 303.25 0.0092 0.0055 -475.9 -22.7415 303.15 0.0101 303.15 0.0279 0.0174 -466.0 -22.8147 303.15 0.0101 303.15 0.0279 0.0174 -486.0 -22.8147 303.15 0.0101 303.05 0.0796 0.0438 -487.0 -22.8147 303.15 0.0101 303.05 0.1042 0.0574 -486.1 -22.9295 Run no. 8 312.95 0.0101 313.05 0.0092 0.0057 -470.2 -22.29233 312.95	298.25	0.0101	298.15	0.1042	0.0574	-485.0	-23.1794
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Run	no. 6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.25	0.0092	0.0058	-468.2	-22.7553
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.05	0.0196	0.0119	-469.6	-22.6647
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.05	0.0564	0.0306	-492.0	-22.7653
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.05	0.0796	0.0462	-474.2	-22.8829
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	303.15	0.0101	303.05	0.1042	0.0573	-486.1	-22.9071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Run	no. 7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.25	0.0092	0.0055	-475.9	-22.7415
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.15	0.0279	0.0174	-466.0	-22.7663
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.15	0.0394	0.0224	-480.8	-22.7176
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.15	0.0564	0.0317	-483.0	-22.8147
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	303.15	0.0101	303.05	0.0796	0.0438	-487.0	-22.8494
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	303.15	0.0101	303.05	0.1042	0.0574	-486.1	-22.9295
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Run	no. 8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312.95	0.0101	313.05	0.0092	0.0058	-470.2	-22.2933
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312.95	0.0101	312.85	0.0196	0.0119	-472.3	-22.2237
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312.95	0.0101	312.85	0.0564	0.0306	-494.9	-22.3166
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	312.95	0.0101	313.05	0.0796	0.0462	-476.6	-22.4132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	312.95	0.0101	312.95	0.1042	0.0573	-488.7	-22.4421
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			Run	no. 9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312.95	0.0101	312.95	0.0092	0.0057	-475.9	-22.3341
312.95 0.0101 312.95 0.0564 0.0314 -488.2 -22.3377 312.95 0.0101 313.05 0.0796 0.0560 -444.7 -22.4477 312.95 0.0101 313.05 0.1042 0.0636 -466.3 -22.4930 Run no. 10 313.15 0.0101 313.15 0.0092 0.0055 -478.8 -22.3109	312.95	0.0101	312.95	0.0279	0.0165	-476.9	-22.2797
312.95 0.0101 313.05 0.0796 0.0560 -444.7 -22.4477 312.95 0.0101 313.05 0.1042 0.0636 -466.3 -22.4930 Run no. 10 313.15 0.0101 313.15 0.0092 0.0055 -478.8 -22.3109	312.95	0.0101	312.95	0.0564	0.0314	-488.2	-22.3377
312.95 0.0101 313.05 0.1042 0.0636 -466.3 -22.4930 Run no. 10 313.15 0.0092 0.0055 -478.8 -22.3109	312.95	0.0101	313.05	0.0796	0.0560	-444.7	-22.4477
Run no. 10 313.15 0.0101 313.15 0.0092 0.0055 -478.8 -22.3109	312.95	0.0101	313.05	0.1042	0.0636	-466.3	-22.4930
<u>313.15</u> 0.0101 <u>313.15</u> 0.0092 0.0055 -478.8 -22.3109				Run	no. 10		
	313.15	0.0101	313.15	0.0092	0.0055	-478.8	-22.3109

contin	ued from pre	vious pa	ge			
T_I	$\bar{m}_{HCl_{I}}$	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{L-glutamicacid}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
313.15	0.0101	313.05	0.0279	0.0174	-469.0	-22.3345
313.15	0.0101	313.15	0.0394	0.0224	-484.1	-22.2796
313.15	0.0101	313.05	0.0564	0.0317	-486.2	-22.3771
313.15	0.0101	313.05	0.0796	0.0438	-490.3	-22.4062
313.15	0.0101	313.05	0.1042	0.0574	-489.2	-22.4793
			Run	no. 11		
323.35	0.0101	323.35	0.0092	0.0058	-473.0	-21.8688
323.35	0.0101	323.35	0.0196	0.0119	-475.0	-21.7749
323.35	0.0101	323.35	0.0564	0.0306	-497.5	-21.8480
323.35	0.0101	323.25	0.0796	0.0462	-478.9	-21.9666
323.35	0.0101	323.35	0.1042	0.0573	-491.0	-21.9731
			Run	no. 12		
323.35	0.0101	323.35	0.0092	0.0055	-480.6	-21.8471
323.35	0.0101	323.35	0.0279	0.0174	-470.6	-21.8571
323.35	0.0101	323.35	0.0394	0.0224	-485.9	-21.8041
323.35	0.0101	323.35	0.0564	0.0317	-487.9	-21.8895
323.35	0.0101	323.35	0.0796	0.0438	-491.7	-21.9050
323.35	0.0101	323.35	0.1042	0.0574	-490.3	-21.9691
			Run	no. 13		
333.15	0.0101	333.15	0.0092	0.0058	-475.4	-21.4795
333.15	0.0101	333.15	0.0196	0.0119	-478.2	-21.4099
333.15	0.0101	333.15	0.0564	0.0306	-500.0	-21.4433
333.15	0.0101	333.15	0.0796	0.0462	-480.9	-21.5506
333.15	0.0101	333.15	0.1042	0.0573	-493.0	-21.5550
			Run	no. 14		
343.25	0.0101	343.35	0.0092	0.0055	-486.0	-21.0912
343.25	0.0101	343.35	0.0279	0.0174	-476.2	-21.1061
343.25	0.0101	343.35	0.0394	0.0224	-491.8	-21.0442
343.25	0.0101	343.25	0.0564	0.0317	-493.5	-21.1224
343 25	0.0101	343 35	0.0796	0.0438	-497.2	-21 1260
343.25	0.0101	343.35	0.1042	0.0574	-495.0	-21.1660
010.20	010101	010100	Bun	no 15	10010	2111000
343.45	0.0101	343.55	0.0092	0.0058	-478.4	-21.1075
343.45	0.0101	343 45	0.0196	0.0119	-481 7	-21.0558
343 45	0.0101	343 35	0.0564	0.0306	-503.0	-21.0649
343 /5	0.0101	343 55	0.0796	0.0462	-483 3	-21 1598
3/3 /5	0.0101	343 35	0.1042	0.0573	-405.8	-21.1020
040.40	0.0101	040.00	0.1042 Bun	no 16	-400.0	-21.1700
353 25	0.0101	353 25	0.0092	0.0058	-480.9	-20 7720
353.25	0.0101	353.25	0.0002	0.0000	-485.5	-20.7567
353.25	0.0101	353.25	0.0150	0.0115	-507.8	-20.7507
252.20	0.0101	252 15	0.0504	0.0300	-488.0	-20.1000
353.25	0.0101	353.15	0.0730	0.0402	501.0	20.0374
JJJ.20	0.0101	999.19	0.1042 D	0.0070 no 17	-301.0	-20.9201
353.95	0.0101	353 35	0.0002	0.0055	480.3	20 7607
000.20 252.0⊑	0.0101	000.00 959 95	0.0092	0.0055	-409.0	-20.7097
252.20	0.0101	000.20 959 0⊑	0.0219	0.0174	-419.0	-20.1000
303.20 252.05	0.0101	303.20 252.05	0.0394	0.0224	-495.7	-20.7398
303.20 252.25	0.0101	303.20 252.15	0.0304	0.0317	-497.0	-20.8185
303.20	0.0101	303.10 252.05	0.0790	0.0438	-301.0	-20.8439
	0.0101	000.40	0.1042	(1,0)(4)	-499.0	-20.0009

continued from previous page

2.9.11 L-aspartic acid

Table 2.29: Experimental equilibrium data for L-aspartic acid measurements

T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{NaOH_{II}}$	$\bar{m}_{L-asparticacid}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	[mol kg ^{-f}]	$[mol kg^{-1}]$	[mV]	[-]
			Run	no. 1		
293.15	0.0099	293.15	0.0196	0.0102	-516.7	-23.9397
293.15	0.0099	293.55	0.0279	0.0150	-502.1	-23.5699
293.15	0.0099	293.15	0.0564	0.0297	-506.5	-23.5526
293.15	0.0099	293.25	0.0796	0.0415	-509.1	-23.5766
293.15	0.0099	293.00	0.1042 Run	no 2	-4/1.0	-23.9204
293.65	0.0099	293.65	0.0279	0.0142	-522.7	-23.7787
293.65	0.0099	293.65	0.0394	0.0198	-528.9	-23.6920
293.65	0.0099	293.65	0.0564	0.0305	-502.6	-23.786
293.65	0.0099	293.55	0.0796	0.0408	-520.7	-23.6998
293.65	0.0099	293.65	0.1042	0.0572	-494.8	-23.8241
			Run	no. 3		
298.05	0.0099	298.05	0.0279	0.0143	-519.7	-23.4643
298.05	0.0099	298.05	0.0564	0.0306	-499.3	-23.4118
298.05	0.0099	298.05	0.0790	0.0429	-499.9	-23.4460
298.05	0.0099	298.05	0.1042 Run	0.0398	-403.4	-23.3408
298.05	0.0099	298.05	0.0090	0.0053	-485.7	-23.3550
298.05	0.0099	298.05	0.0279	0.0150	-504.6	-23,4092
298.05	0.0099	298.05	0.0564	0.0297	-508.8	-23.3466
298.05	0.0099	298.05	0.0796	0.0415	-512.0	-23.4043
			Run	no. 5		
298.15	0.0099	298.15	0.0279	0.0142	-521.6	-23.4305
298.15	0.0099	298.15	0.0394	0.0198	-528.7	-23.4065
298.15	0.0099	298.15	0.0564	0.0305	-503.4	-23.5338
298.15	0.0099	298.05	0.0796	0.0408	-519.9	-23.3711
298.15	0.0099	298.05	0.1042 Pup	0.0372	-495.5	-23.3701
303.05	0.0099	303.05	0.0196	0.0105	-506.4	-23 0902
303.05	0.0099	302.95	0.0279	0.0143	-519.9	-23.1827
303.05	0.0099	302.95	0.0394	0.0203	-517.4	-23.0797
303.05	0.0099	302.95	0.0564	0.0306	-500.6	-23.1666
303.05	0.0099	303.05	0.0796	0.0429	-501.1	-23.1909
303.05	0.0099	303.05	0.1042	0.0598	-484.5	-23.2849
			Run	no. 7		
303.05	0.0099	303.05	0.0090	0.0053	-486.6	-23.0989
303.05	0.0099	303.05	0.0279	0.0150	-505.8	-23.1593
303.05	0.0099	302.95	0.0564	0.0297	-510.0	-23.1004
303.05	0.0099	303.05	0.0790 Bun	0.0415	-312.9	-23.1352
303.15	0.0099	303.05	0.0279	0.0142	-522.4	-23.1919
303.15	0.0099	303.15	0.0394	0.0198	-528.8	-23.1175
303.15	0.0099	303.15	0.0564	0.0305	-504.5	-23.2720
303.15	0.0099	303.05	0.0796	0.0408	-521.2	-23.1293
303.15	0.0099	303.05	0.1042	0.0572	-496.7	-23.3189
			Run	no. 9		
312.95	0.0099	312.85	0.0090	0.0053	-489.8	-22.6883
312.95	0.0099	313.05	0.0279	0.0150	-508.9	-22.7162
312.95	0.0099	313.05	0.0564	0.0297	-513.0	-22.6374
312.95	0.0099	919.09	0.0796	0.0415 no 10	-919.9	-22.0/0/
313 05	0.0099	313.05	0.0196	0.0105	-509 1	-22.6457
313.05	0.0099	312.95	0.0279	0.0143	-522.0	-22.7259
313.05	0.0099	312.95	0.0394	0.0203	-520.0	-22.6331
313.05	0.0099	312.85	0.0564	0.0306	-503.6	-22.7116
313.05	0.0099	313.05	0.0796	0.0429	-504.1	-22.7270
313.05	0.0099	312.95	0.1042	0.0598	-487.0	-22.8184
			Run	no. 11		

continu	ued from pre	vious pa	ge			
T_I	\bar{m}_{HCl_I}	T_{II}	m _{NaOHII}	$\bar{m}_{L-asparticacid}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	$[mol kg^{-1}]$	$[mol kg^{-1}]$	[mV]	[-]
313.05	0.0099	312.95	0.0090	0.0050	-497.7	-22.6376
313.05	0.0099	313.05	0.0279	0.0142	-523.6	-22.6843
313.05	0.0099	313.15	0.0394	0.0198	-529.6	-22.5914
313.05	0.0099	313.05	0.0564	0.0305	-506.6	-22.7769
313.05	0.0099	312.95	0.0796	0.0408	-523.1	-22.6383
313.05	0.0099	312.95	0.1042	0.0572	-498.7	-22.8217
			Run	no. 12		
323.15	0.0099	323.15	0.0090	0.0053	-491.4	-22.2049
323.15	0.0099	323.25	0.0279	0.0150	-510.6	-22.2271
323.15	0.0099	323.25	0.0564	0.0297	-514.7	-22.1434
323.15	0.0099	323.05	0.0796	0.0415	-517.1	-22.1721
			Run	no. 13		
323.25	0.0099	323.25	0.0196	0.0105	-511.6	-22.2067
323.25	0.0099	323.25	0.0279	0.0143	-523.7	-22.2446
323.25	0.0099	323.25	0.0394	0.0203	-522.1	-22.1644
323.25	0.0099	323.15	0.0564	0.0306	-506.1	-22.2429
323.25	0.0099	323.15	0.0796	0.0429	-507.4	-22.3032
323.25	0.0099	323.15	0.1042	0.0598	-489.9	-22.3821
			Run	no. 14		
323.25	0.0099	323.35	0.0090	0.0050	-499.6	-22.1670
323.25	0.0099	323.15	0.0279	0.0142	-525.3	-22.2239
323.25	0.0099	323.25	0.0394	0.0198	-531.3	-22.1397
323.25	0.0099	323.25	0.0564	0.0305	-509.2	-22.3184
323.25	0.0099	323.25	0.0796	0.0408	-525.3	-22.1655
323.25	0.0099	323.25	0.1042	0.0572	-501.0	-22.3471
			Run	no. 15		
333.15	0.0099	333.15	0.0196	0.0105	-511.6	-21.6810
333.15	0.0099	333.15	0.0279	0.0143	-522.5	-21.6334
333.15	0.0099	333.15	0.0564	0.0306	-506.2	-21.7240
333.15	0.0099	333.15	0.0796	0.0429	-506.8	-21.7579
			Run	no. 16		
333.25	0.0099	333.35	0.0090	0.0050	-500.5	-21.6947
333.25	0.0099	333.35	0.0279	0.0142	-523.9	-21.5730
333.25	0.0099	333.15	0.0564	0.0305	-510.1	-21.8367
333.25	0.0099	333.15	0.0796	0.0408	-525.1	-21.6218
333.25	0.0099	333.25	0.1042	0.0572	-501.5	-21.8538
			Run	no. 17		
342.25	0.0099	342.35	0.0090	0.0052	-497.3	-21.3416
342.25	0.0099	342.35	0.0196	0.0107	-508.6	-21.2770
342.25	0.0099	342.65	0.0796	0.0417	-516.0	-21.2120
342.25	0.0099	342.65	0.1042	0.0565	-504.1	-21.3373
			Run	no. 18		
353.25	0.0099	353.15	0.0090	0.0052	-500.1	-20.9625
353.25	0.0099	353.15	0.0196	0.0107	-511.2	-20.8777
353.25	0.0099	353.25	0.0796	0.0417	-517.4	-20.7727
353.25	0.0099	353.25	0.1042	0.0565	-507.1	-20.9679

continued from previous page

2.9.12	Taurine	with K	$^+$ and Li ⁺	as	counter	ions
4.3.14 .	Laurine	WILLI IX	anu Li	as	counter	10112

Table 2.30: Experimental equilibrium data for taurine measurements using different counter ions

T		T				$L_{\mathcal{L}}(\mathcal{V})$
11	m _{HClI}	111	m _{KOH} II	$m_{taurine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	[mol kg ⁻¹]	[K]	[mol kg ⁻¹]	[mol kg ⁻¹]	[mV]	[-]
			Run no	. 1		
293.15	0.0102	293.25	0.0101	0.0644	-371.8	21.1928
293.15	0.0102	293.25	0.0101	0.1324	-351.1	21.1852
293.15	0.0102	293.25	0.0101	0.2056	-339.3	21.1870
293.15	0.0102	293.15	0.0101	0.2641	-332.3	21.1772
293.15	0.0102	293.05	0.0101	0.3446	-326.0	21.2088
293.15	0.0102	293.25	0.0101	0.4205	-320.6	21.1886
293.15	0.0102	293.15	0.0101	0.5611	-313.2	21.1956
			Run no	. 2		
323.65	0.0102	323.55	0.0101	0.0644	-365.1	19.5896
323.65	0.0102	323.55	0.0101	0.1324	-342.4	19.5869
323.65	0.0102	323.55	0.0101	0.2056	-329.3	19.5857
323.65	0.0102	323.65	0.0101	0.2641	-321.7	19.5701
323.65	0.0102	323.55	0.0101	0.3446	-313.9	19.5706
323.65	0.0102	323.55	0.0101	0.4205	-308.5	19.5813
323.65	0.0102	323.55	0.0101	0.5611	-300.3	19.5818
			Run no	. 3		
353.75	0.0102	353.85	0.0101	0.0644	-359.1	18.2851
353.75	0.0102	353.85	0.0101	0.1324	-333.7	18.2635
353.75	0.0102	353.75	0.0101	0.2056	-319.0	18.2542
353.75	0.0102	353.85	0.0101	0.2641	-311.1	18.2527
353.75	0.0102	353.85	0.0101	0.3446	-301.7	18.2198
353.75	0.0102	353.75	0.0101	0.4205	-296.3	18.2511
353.75	0.0102	353.75	0.0101	0.5611	-286.7	18.2307

T_I	\bar{m}_{HCl_I}	T_{II}	$\bar{m}_{LiOH_{II}}$	$\bar{m}_{taurine}$	$(E_I - E_{II})$	$ln(K_{2,exp})$
[K]	$[mol kg^{-1}]$	[K]	[mol kg ⁻¹]	$[mol kg^{-1}]$	[mV]	[-]
			Run no	. 1		
293.15	0.0102	293.15	0.0103	0.0434	-384.1	21.1748
293.15	0.0102	293.25	0.0103	0.1248	-352.4	21.1544
293.15	0.0102	293.25	0.0103	0.1953	-340.3	21.1558
293.15	0.0102	293.15	0.0103	0.2789	-331.0	21.1658
293.15	0.0102	293.25	0.0103	0.3280	-326.7	21.1580
293.15	0.0102	293.15	0.0103	0.4049	-321.3	21.1667
			Run no	. 2		
323.65	0.0102	323.55	0.0103	0.0434	-379.2	19.5845
323.65	0.0102	323.55	0.0103	0.1248	-344.2	19.5693
323.65	0.0102	323.55	0.0103	0.1953	-330.8	19.5689
323.65	0.0102	323.55	0.0103	0.2789	-320.3	19.5648
323.65	0.0102	323.55	0.0103	0.3280	-315.8	19.5712
323.65	0.0102	323.55	0.0103	0.4049	-309.5	19.5622
323.65	0.0102	323.55	0.0103	0.5532	-300.8	19.5690
			Run no	. 3		
353.75	0.0102	353.75	0.0103	0.0434	-374.2	18.2742
353.75	0.0102	353.65	0.0103	0.1248	-336.2	18.2719
353.75	0.0102	353.65	0.0103	0.1953	-321.8	18.2795
353.75	0.0102	353.65	0.0103	0.2789	-309.9	18.2615

Chapter 3

Diffusivities in Aqueous Piperazine and Aqueous (Piperazine + MDEA) Solutions

3.1 Introduction

Aqueous solutions of amines are frequently used for the removal of acid gases, such as CO_2 and H_2S , from a variety of gas streams. In particular, aqueous solutions of alkanolamines and blends of alkanolamines are widely applied in gas treating. [50] Recently, blends of a primary or secondary (alkanol)amine with an aqueous solution of a tertiary (alkanol)amine has found application in the removal and absorption of CO_2 due to higher reaction rates and lower heats of regeneration in the desorber section. There is a growing interest in the use of piperazine (PZ) blended with aqueous solutions of N-methyldiethanolamine (MDEA) as a tertiary alkanolamine for gas treating processes. This type of solution is also called the activated MDEA solvent. PZ is known as the activator or promotor and enhances the reactivity towards CO_2 , whereas MDEA contributes to the lower heats of regeneration. In these solvents, the concentration of MDEA is usually kept at about (3 to 4) kmol·m⁻³ and typically a maximum PZ concentration of about 1.0 kmol·m⁻³ is applied. [27, 10, 99, 100, 25]

Accurate design of gas-liquid contactors requires knowledge on the mass transfer coefficients and diffusion coefficients. As the mass transfer coefficients are related to the diffusion coefficients, knowledge of the diffusion coefficients is necessary to make the design of this equipment more reliable. They are also essential for a correct and accurate interpretation of many (lab scale) absorption rate experiments, as e.g. the experiments aimed at the determination of the intrinsic kinetics in a gas-liquid process. [20, 94] In the past, several studies have reported experimental diffusivities of carbon dioxide and various (alkanol)amines in systems relevant for acid gas absorption. [96, 86] In this work, liquid and gas diffusivities are presented to extend the existing experimental database of absorbent properties. Liquid diffusivities in aqueous PZ solutions and aqueous (PZ + MDEA) solutions and gas diffusivities in aqueous PZ are reported at various concentrations and temperatures. The diffusivities have been determined using the Taylor dispersion technique.

3.2 Theory and experimental procedures

3.2.1 Taylor Dispersion Technique - liquid diffusivities

The diffusivities were determined using the Taylor dispersion technique. A square pulse of a solute solution is injected into a solvent solution showing laminar flow through a capillary tube. The solute contains the same components as the solvent, but with a slightly higher concentration of the component of which diffusivities are to be determined (an addition of approx. $0.05 \text{ kmol}\cdot\text{m}^{-3}$). As an example; for measurements of liquid diffusivity of PZ in aqueous PZ solution at about 1.0 kmol·m⁻³, the solvent solution would contain 1.00 kmol·m⁻³ PZ. The solute solution would contain 1.05 kmol·m⁻³ PZ, and a square pulse of this solution would be injected into the flowing solvent solution. The combined action of axial convection and radial and axial molecular diffusion will eventually change the shape of the solute pulse (the excess number of moles of PZ injected) into a gaussian shaped curve. The theory and mathematical description of such measurements have been described in detail by Taylor [89, 90] and Aris [5]. The mathematical description of a measurement is described by:

$$C_m = \frac{N_{inj,A}}{2\pi R^2 \sqrt{\pi K_A t}} exp\left(-\frac{(L-ut)^2}{4K_A t}\right)$$
(3.1)

$$K_A = \frac{u^2 R^2}{48D_A} + D_A \tag{3.2}$$

where C_m is the measured gaussian concentration profile, $N_{inj,A}$ is the excess number of moles of amine injected, t is the time, and D_A is the binary molecular diffusion coefficient. The subscript A refers to the amine. The other parameters are defined in Table 3.1. $N_{inj,A}$, u and D_A are the independent parameters used to curvefit equation (3.1) and (3.2) to the experimentally recorded results. Since the concentration of the solute pulse decreases because of dispersion while the solute pulse is traversing with the solvent through the tubing, an average concentration value has to be determined. Alizadeh et al. [4] referred to this as the reference concentration C_{ref} given by:

$$C_{ref} = C_{solv} + \frac{N_{inj,A} \left(\frac{5}{16} - \frac{1}{8\sqrt{\pi}}\right)}{\pi R^2 \sqrt{2K_A t}}$$
(3.3)

where C_{solv} is the solvent concentration and \dot{t} is the time at which the measurement ends.

The experimental setup used is shown schematically in Figure 3.1. Two vessels containing the solute solution and solvent solution are kept under a constant 5 bar pressure of saturated helium in order to create a constant flow of the solute solution and the solvent solution. Introduction of a square solute pulse is done by switching an air actuated six way valve back and forth within a few seconds. The capillary tube is elliptical coiled and placed in a water bath for temperature control. The flow velocity is controlled with mass flow controllers (Rosemount Flowmega 5881), located behind the refractive index (RI) detector (Varian 350 RI) and the six way pulse valve in order to obtain a constant pulsation-free solute and solvent solution flow throughout the measurement. In order to avoid bubble formation inside the tubing and a disturbance of the laminar fluid flow profile, especially at higher temperatures, pressure reducers are located behind the RI detector and the six-way pulse valve. These reducers pressurizes the fluids inside the tubing to 4 bar. The influence of the pressure on the diffusion coefficients can be neglected for the pressure applied. [31. 59) Prior to each experiment, both the solute and the solvent solution were degassed by applying vacuum for a while, and further the RI detector was calibrated. The RI detector showed a linear response to concentration changes of the amines investigated. A computer is connected to the setup for control and data acquisition. The output signal from the RI detector is recorded as a function of time and used to determine the molecular diffusion coefficients as aforementioned. The dimensions of the experimental setup and the flow conditions are given in Table 3.1.

Figure 3.1: Schematic representation of the Taylor dispersion setup

0.1. Dimensions of the exp	201 11101	itai setup ana now cona
Length of the coil	L	14.92 m
Inner radius of the coil	R	$5.14 \cdot 10^{-4} \text{ m}$
Radius of the coil	R_C	0.1 m
Injection volume	V_{inj}	$(2.5 \text{ to } 4.1) \cdot 10^{-8} \text{ m}^3$
Liquid flow velocity	u	$(2 \text{ to } 6) \cdot 10^{-3} \text{ m} \cdot \text{s}^{-1}$

Table 3.1: Dimensions of the experimental setup and flow conditions

A disturbance of the laminar fluid flow profile can occur due to the elliptic coiling of the tube. The varying path lengths traversed by the fluid at different radial positions inside the capillary tube and the secondary flows present in the flow can contribute additionally to the dispersion process. This topic has been extensively discussed by Alizadeh et al. [4] and Snijder et al. [86]. In order to avoid this disturbance, the critical $(De)^2Sc$ was determined for each system. The dimensionless $(De)^2Sc$ number is defined as:

$$De = Re \left(\frac{R_C}{R}\right)^{-1/2} \tag{3.4}$$

$$Sc = \frac{\mu}{\rho D} \tag{3.5}$$

where Re is the well-known Reynolds number and μ and ρ are the solvent viscosity and density. The other parameters are defined in Table 3.1. The measurements had to be carried out at a value of $(De)^2Sc$ lower than the critical one.

3.2.2 Taylor Dispersion Technique - gas diffusivities

A square pulse of a solute solution is injected into a solvent solution showing laminar flow through a capillary tube. The solute solution contains the same amounts of liquid components as the solvent, but with additional N₂O gas absorbed. As an example; for measurements of N₂O diffusivity in an aqueous PZ solution of 1.0 kmol·m⁻³, the solute and solvent solution would contain 1.0 kmol·m⁻³ PZ. The solute solution would additionally contain N₂O gas absorbed, and a square pulse of this solution would be injected into the flowing solvent solution. The combined action of axial convection and radial and axial molecular diffusion will eventually change the shape of the solute pulse into a gaussian shaped curve. The theory and mathematical description of such a measurement have been in detail described by Taylor [89, 90] and Aris [5].

Diffusion of N_2O in H_2O

Figure 3.2 shows a typical experimental result from a pulse recorded using the Taylor dispersion technique. The figure shows a dimensionless result from a N₂O/H₂O system. The recorded pulse is the response from absorbed N₂O in the solution flowing through the RI detector. The experimental result of the diffusion coefficient from this typical experiment is derived from curve fitting equation (3.6) and (3.7) [89, 90, 5] to the experimental data where N_{inj,N_2O} , u and D_{N_2O} are the independent variables.

$$C_m = \frac{N_{inj,N_2O}}{2\pi R^2 \sqrt{\pi K_{N_2Ot}}} exp\left(-\frac{(L-ut)^2}{4K_{N_2Ot}}\right)$$
(3.6)

$$K_{N_2O} = \frac{u^2 R^2}{48 D_{N_2O}} + D_{N_2O} \tag{3.7}$$

In equation (3.6) and (3.7), C_m is the measured concentration profile, t is the time, N_{inj,N_2O} is the number of moles of N₂O injected and D_{N_2O} is the molecular diffusion coefficient of N₂O. The other parameters are defined in Table 3.1.

Diffusion of N_2O in $(PZ + H_2O)$

Figure 3.3 shows a dimensionless recorded experimental result from a $N_2O/(PZ + H_2O)$ system. It is shown that a combination of two pulses appears. The degassed solvent and solute solutions used were prepared containing a specific and equal concentration of PZ. N_2O was further absorbed into the solute solution as aforementioned. As N_2O is absorbed into the solution, a small liquid volume increase takes place because of the volume occupied by the N_2O molecules. Consequently, the concentration of PZ is decreased in the solute solution, as compared to the solvent solution. The 'negative' peak in Figure 3.3 must be attributed to this phenomena. The 'positive' peak is the effect of the N_2O present in the solution.

A RI detector shows a higher sensitivity towards concentration changes of liquid compounds than concentration changes of absorbed gas compounds in the fluid under investigation. The concentration peak responsible for the 'negative' pulse in Figure 3.3 was found to be in the order of 10^{-6} kmol·m⁻³ after calibration of a PZ/H₂O system, whereas the 'positive' peak was found to be in the order of 10^{-3} kmol·m⁻³. Since the concentration differences between the 'negative' and 'positive' peak is in the order of 10^3 kmol·m⁻³, ternary diffusion effects such as cross diffusion can be neglected, i.e. the concentration gradients of PZ is much lower than the concentration gradients of N₂O in the solute pulse as it is traversing and dispersing in the capillary tube. As the dispersion of the 'positive' and 'negative' puls are unequal, molecular diffusion coefficients can be determined from the recorded experimental data by the principle of superposition. The total response of the RI detector is the sum of two separate gaussian curves.

The experimental measured result was curve fitted to equation (3.8) to (3.10):

$$C_{m} = \frac{N_{inj,N_{2}O}}{2\pi R^{2} \sqrt{\pi K_{N_{2}Ot}}} exp\left(-\frac{(L-ut)^{2}}{4K_{N_{2}Ot}}\right) + \frac{N_{inj,PZ}}{2\pi R^{2} \sqrt{\pi K_{PZ}t}} exp\left(-\frac{(L-ut)^{2}}{4K_{PZ}t}\right)$$
(3.8)

$$K_{N_2O} = \frac{u^2 R^2}{48 D_{N_2O}} + D_{N_2O} \tag{3.9}$$

$$K_{PZ} = \frac{u^2 R^2}{48D_{PZ}} + D_{PZ} \tag{3.10}$$

where C_m is the measured concentration profile, t is the time, N_{inj,N_2O} and $N_{inj,PZ}$ are the respective number of moles of N₂O and excess number of moles of PZ injected. The fluid flow, u, is identical for both N₂O and PZ. D_{N_2O} and D_{PZ} are the respective molecular binary diffusion coefficients of N₂O and PZ. The parameters N_{inj,N_2O} , $N_{inj,PZ}$, u and D_{N_2O} in equation (3.8) to (3.10) are the independent variables used to fit the equations to the experimental data. D_{PZ} is taken from Derks [25], and the influence of N₂O present in the current work on this value is neglected. The value of D_{PZ} represents the dispersion of the 'negative' pulse in Figure 3.3 through equation (3.10). The other parameters are defined in Table 3.1.

Figure 3.2: Typical result from a N_2O/H_2O system: -, exp. result; $\cdots \circ \cdots$, fit

Figure 3.3: Typical result from a N₂O/(PZ + H₂O) system: –, exp. result; $\cdots \circ \cdots$, fit; ––, N₂O response; ----, PZ response

3.2.3 Chemicals

The amine solutions were prepared by dissolving known amounts of PZ [110-85-0] (purity 99%, Aldrich) and/or MDEA [105-59-9] (purity 98%, Aldrich) in double distilled water. The actual amine concentrations in the prepared solution were measured (at T = 293 K) by means of a volumetric titration with 1.0 mol·L⁻¹ HCl. The experimentally determined PZ and MDEA concentrations were accurate to within 1.0% of the concentrations as determined by the weight ratios of the components. The methanol [67-56-1] (purity 99%, Aldrich) solutions in water, used in validation experiments, were prepared in a similar manner. The helium gas [7440-59-7] used was supplied by Hoekloos.

3.3 Results and discussion

3.3.1 Validation

The diffusion coefficients of the binary system methanol-water were determined in order to validate the experimental setup. The critical $(De)^2Sc$ number was determined to be about 150 for this system. The experimentally obtained diffusion coefficients measured at different composition and temperature are listed in Table 3.2 and 3.3, and a graphical comparison of the present data with literature data [92, 54, 31, 58] is given in Figure 3.4 and 3.5. It can be concluded that the newly obtained experimental diffusivity data are very well in line with the experimental data available in the literature.

Table 3.2: Diffusion coefficient, D_{methanol} , of methanol in water at 308.15 K as a function of mole fraction, x_{methanol} .

x_{methanol}	$D_{\rm methanol} / 10^{-9} \cdot {\rm m}^2 \cdot {\rm s}^{-1}$
0.00	1.89
0.01	1.81
0.10	1.51
0.20	1.31
0.30	1.26
0.40	1.18
0.50	1.27
0.60	1.36
0.80	1.91
1.00	2.62

Table 3.3: Infinite dilution diffusion coefficient, $D_{0,\text{methanol}}$, of methanol in water as a function of temperature T

T / K	$D_{0,\text{methanol}} / 10^{-9} \cdot \text{m}^2 \cdot \text{s}^{-1}$
298.15	1.55
313.15	2.39
333.15	3.58
353.15	4.68
363.15	5.39

Figure 3.4: Diffusion coefficient, D_{methanol} , of methanol in water at 308.15 K as a function of mole fraction, x_{methanol} . •, this work; \triangle , van de Ven-Lucassen et al. [92]; ∇ , Lee & Li [54]

3.3.2 Liquid diffusivities in aqueous PZ solutions

Liquid diffusivities in aqueous PZ solution were measured over a concentration range of (0 to 1.4) kmol·m⁻³ PZ and temperatures between (293.15 and 368.15) K. The results (averaged over at least three experiments) are listed in Table 3.4. The critical (De)²Sc was 150 for this system.

As in the work of Snijder et al. [86], all experimental diffusion coefficients were correlated using one equation accounting for the influence of both temperature (T in K) and concentration (C_{PZ} in mol·m⁻³). The resulting relation is given in Eq. (3.11), which was able to correlate all experimental data with an average deviation of less than 4% (maximum deviation 9%).

$$ln(D) = -13.672 + \frac{-2160.9}{T} - 19.263 \cdot 10^{-5} \cdot C_{PZ}$$
(3.11)

Versteeg & Van Swaaij [96] suggested a modified Stokes-Einstein relation to estimate the amine diffusion coefficient from the solution's viscosity according to Eq. (3.12). Snijder et al. [86] showed in their work that this relation is able to predict the diffusion coefficients of various alkanolamines (MEA, DEA, MDEA and DIPA) in aqueous solution over a wide range of temperatures and concentrations.

$$\frac{D}{D_0} = \left(\frac{\mu_0}{\mu}\right)^{0.6} \tag{3.12}$$

Figure 3.5: Infinite dilution diffusion coefficient, $D_{0,\text{methanol}}$, of methanol in water as a function of temperature T. •, this work; \triangle , van de Ven-Lucassen et al. [92]; \bigtriangledown , Lee & Li [54]; \triangleright , Easteal & Woolf [31]; \triangleleft , Matthews & Akgerman [58]

where μ_0 is the viscosity of pure water, μ is the viscosity of the solution and D_0 is the diffusion coefficient at infinite dilution. Measuring viscosities are usually very straightforward, whereas the experimental determination of D_0 is a more laborious task. In the literature, several correlations have been proposed to estimate the diffusion coefficient at infinite dilution. In the present work, six of these estimation methods are compared and evaluated on their ability to predict the infinitely dilute diffusion coefficient of PZ in water. An important parameter in all methods is the molar volume of PZ at the normal boiling point, which was estimated using the method of Le Bas [73]. This value $(0.1052 \text{ m}^3 \cdot \text{kmol}^{-1})$ was compared to the result obtained with an extrapolation relation given by Steele et al. [87] in their study on PZ's critical constants. As both methods yielded a similar value, the value of Le Bas [73] was found reliable to use in the diffusion coefficient estimations. The values calculated with the estimation methods are compared to the experimental diffusion coefficients at infinite dilution, taken from Table 3.4 at $C_{ref,PZ}$ in the order of 10^{-3} kmol·m⁻³, and the results are listed in Table 3.5 and shown graphically in Figure 3.6.

Both Table 3.5 and Figure 3.6 clearly illustrate that only the prediction method of Othmer & Thakar [66] is able to predict the piperazine diffusion coefficient at infinite dilution in water within 10% over the complete temperature range. Also the Hayduk & Laudie [38] equation seems to be a suitable prediction method, although it consistently overpredicts the experimental value with

T / K	$C_{ref,PZ}$ / kmol·m ⁻³	$D / 10^{-9} \cdot m^2 \cdot s^{-1}$
293.15	$0.8 \cdot 10^{-3}$	0.757
	0.284	0.660
	0.602	0.617
	0.907	0.560
	1.46	0.511
298.15	$0.8 \cdot 10^{-3}$	0.889
	0.285	0.762
	0.602	0.714
	0.908	0.666
	1.46	0.607
303.15	$0.9 \cdot 10^{-3}$	1.01
	0.285	0.870
	0.602	0.799
	0.908	0.754
	1.46	0.715
313.15	$1.0 \cdot 10^{-3}$	1.27
	0.285	1.11
	0.603	1.05
	0.910	0.972
	1.46	0.948
333.15	$1.2 \cdot 10^{-3}$	1.83
	0.285	1.66
	0.604	1.59
	0.913	1.52
	1.47	1.41
353.15	$1.4 \cdot 10^{-3}$	2.47
	0.287	2.36
	0.605	2.24
	0.915	2.15
	1.47	2.01
368.15	$1.6 \cdot 10^{-3}$	3.06
	0.287	2.89
	0.606	2.82
	0.917	2.60
	1.48	2.59

Table 3.4: Diffusion of PZ in aqueous PZ solutions

about 10%. Both the method of Scheibel [81] and the modified Wilke-Chang [38] relation provide satisfactory results up to a temperature of 313.15 K, but with increasing temperature the agreement between prediction and experiment gradually deteriorates. In the study of Snijder et al. [86] on the diffusion of MEA, DEA, MDEA and DIPA in aqueous solution, the method of Othmer & Thakar [66] was also found to give the best prediction results (together with the modified Wilke-Chang correlation).

Next, the applicability of the modified Stokes-Einstein relation (Eq. (3.12)) was evaluated for the diffusion of PZ, using the experimental viscosity data reported by Derks et al. [26] and the experimental diffusion coefficients from

in water			
Method	Reference	Symbol in Figure 3.6	Avg. dev. / %
Othmer-Thakar	[66]	0	5.6
Wilke-Chang	[97]	\bigtriangleup	20
Hayduk-Minas	[39]	\bigtriangledown	20
Scheibel	[81]	\triangleright	12
Hayduk-Laudie	[38]	\triangleleft	11
Modified Wilke-Chang ^{a}	[38]		12

Table 3.5: Methods to estimate the diffusion coefficient of PZ at infinite dilution in water

 $^a{\rm Hayduk}\mbox{-Laudie}$ [38] recommended to adjust the water association parameter in the Wilke-Chang relation from 2.6 to a value of 2.26.

Figure 3.6: Comparison between the experimental infinitely dilute diffusion coefficient and the estimated value according to the estimation methods applied. \circ , Othmer - Thakar; \triangle , Wilke - Chang; \bigtriangledown , Hayduk - Minas; \triangleright , Scheibel; \triangleleft , Hayduk - Laudie; \Box , modified Wilke - Chang. References are given in Table 3.5

Table 3.4. For this purpose, a double logarithmic plot of Eq. (3.12) is shown in Figure 8. Despite the fact there seems to be a small offset between some of the experimental data and the solid line representing Eq. (3.7), it may still be concluded that the modified Stokes-Einstein relation can be used for estimating PZ diffusivities in aqueous PZ systems (at concentrations < 1.5 kmol·m⁻³) satisfactorily, as the deviation is always within about 10%.

Figure 3.7: Stokes-Einstein plot for the diffusion coefficient of PZ in aqueous PZ solutions: •, 293 K; \blacktriangle , 298.15 K; \blacktriangledown , 303.15 K; \triangleright , 313.15 K; The solid line represents Eq. (3.12) and the dashed lines represents $\pm 10\%$

3.3.3 Liquid diffusivities in aqueous (PZ + MDEA) solutions

Diffusivities in ternary (and multicomponent) systems have, in a large part, been determined by the use of interferometry at ambient temperatures. Amongst others, Miller [62, 63] has conducted extensive work on this subject. Lately, the Taylor dispersion technique has also been used to determine diffusivities in ternary liquid systems. [35] In kinetic models describing aqueous solutions of (PZ + MDEA) as possible CO₂ absorbents, apparent diffusivities are used [10, 99, 100, 25] and multi-component diffusion effects such as cross diffusion are thus neglected. The purpose of the present work is to determine diffusivities in the aqueous (PZ + MDEA) system to give insight into apparent diffusivities used in absorption models for these ternary systems.

The apparent diffusion coefficients of both PZ and MDEA in aqueous solutions containing 4.0 kmol·m⁻³ MDEA and (0, 0.5 or 1.0) kmol·m⁻³ PZ were measured at temperatures between (298.15 and 368.15) K. During measurements of PZ diffusivities in aqueous (PZ + MDEA) solutions, the concentration of MDEA was kept at a constant 4.0 kmol·m⁻³ concentration in both the solute and the solvent, e.g. no concentration gradient of MDEA in the fluid traversing through the capillary coil. The solute contained a slightly higher concentration of PZ than the solvent, e.g. an addition of approx. 0.05 kmol·m⁻³. Cross diffusion effects present in ternary systems are neglected in these measurements.

During measurements of MDEA diffusivities in aqueous (PZ + MDEA) solutions, the concentration of PZ was kept constant in both the solute and the solvent as described whereas the solute contained a slightly higher concentration of MDEA (an addition of approx $0.05 \text{ kmol} \cdot \text{m}^{-3}$) than the solvent. The results (averaged over at least three experiments) are listed in Table 3.6. All experiments were carried out with $(\text{De})^2\text{Sc} < 47$.

Similarly to the results obtained for the aqueous PZ system, the experimentally obtained results listed in Table 3.6 are compared to predictions made with the modified Stokes-Einstein equation (Eq. (3.12)). The MDEA diffusion coefficient at infinite dilution was taken from the work of Snijder et al. [86]. Due to a lack of viscosity data, this comparison is limited to the conditions of which the viscosity data are listed in this work and by Rinker et al. [76]. Figure 3.8 shows that an agreement exists between the experimentally obtained PZ and MDEA diffusivities and the values obtained using the modified Stokes-Einstein equation.

Figure 3.8: Comparison between the experimentally determined diffusion coefficients, D_{exp} , and the values estimated with the Stokes-Einstein equation, D_{SE} : •, PZ; •, MDEA ; The dashed lines represents $\pm 20\%$

3.3.4 Diffusivity of N₂O in H₂O

Measurements were conducted on the system N_2O/H_2O from (293 to 368) K to evaluate the accuracy of the equipment used. The critical $(De)^2Sc$ number was found to be 130 for this system. Figure 3.9 shows the experimental results of N_2O diffusion in H_2O , and the results are tabulated in Table 3.7. The values are the average value of at least three measurements, and the results of the present study are in agreement with the results reported by previous authors using different experimental techniques. [23, 29, 37, 78, 46, 96, 91, 79]

Figure 3.9: Experimental results of N₂O diffusion in H₂O: •, exp. results this work; \bigtriangledown , Davidson & Cullen [23]; \triangle , Duda & Vrentas [29]; \triangleleft , Haimour & Sandall [37]; \triangleright , Sada et al. [78]; \Diamond , Joosten & Danckwerts [46]; \Box , Versteeg & Van Swaaij [96]; +, Thomas & Adams [91]; *, Samanta et al. [79]

Tat	Table 3.6: Diffusion coefficients of PZ and MDEA in aqueous $(PZ + MDEA)$ solutions						
T	C_{MDEA}	$C_{ref,PZ}$	D_{PZ}	C_{PZ}	$C_{ref,MDEA}$	D_{MDEA}	
K	$\mathrm{kmol}\cdot\mathrm{m}^{-3}$	$\mathrm{kmol}\cdot\mathrm{m}^{-3}$	$\overline{10^{-9}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-1}}$	$\mathrm{kmol}\cdot\mathrm{m}^{-3}$	$\mathrm{kmol}\cdot\mathrm{m}^{-3}$	$\overline{10^{-9}\cdot\mathrm{m}^{2}\cdot\mathrm{s}^{-1}}$	
298.15	4.0	$0.6 \cdot 10^{-3}$	0.252	0	3.99	0.250	
	4.0	0.504	0.228	0.5	3.96	0.215	
	4.0	1.00	0.199	1.0	4.02	0.182	
303.15	4.0	$0.6 \cdot 10^{-3}$	0.303	0	3.99	0.291	
	4.0	0.504	0.277	0.5	3.96	0.247	
	4.0	1.01	0.249	1.0	4.02	0.213	
313.15	4.0	$0.7 \cdot 10^{-3}$	0.434	0	3.99	0.382	
	4.0	0.506	0.400	0.5	3.96	0.353	
	4.0	1.01	0.380	1.0	4.02	0.301	
333.15	4.0	$1.0 \cdot 10^{-3}$	0.736	0	4.00	0.658	
	4.0	0.509	0.716	0.5	3.98	0.610	
	4.0	1.01	0.662	1.0	4.03	0.538	
353.15	4.0	$1.2 \cdot 10^{-3}$	1.14	0	4.01	1.02	
	4.0	0.516	1.10	0.5	3.99	0.964	
	4.0	1.02	1.12	1.0	4.04	0.886	
368.15	4.0	$1.3 \cdot 10^{-3}$	1.48	0	4.02	1.34	
	4.0	0.519	1.46	0.5	3.99	1.27	
	4.0	1.02	1.47	1.0	4.05	1.16	

Table 3.6: Diffusion coefficients of PZ and MDEA in aqueous (PZ + MDEA) solutions

T / K	$D / 10^{-9} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-1}$	Reference		$Method^a$
288.00	1.39	Haimour & Sandall	[37]	LLJ
289.70	1.70	Davidson & Cullen	[23]	WWA
291.10	1.47	Versteeg & Van Swaaij	[96]	DC
292.00	1.56	Versteeg & Van Swaaij	[96]	DC
292.90	1.48	Versteeg & Van Swaaij	[96]	DC
293.00	1.52	Haimour & Sandall	[37]	LLJ
293.00	1.92	Thomas & Adams	[91]	LLJ
293.00	1.45	Versteeg & Van Swaaij	[96]	DC
293.00	1.65	Versteeg & Van Swaaij	[96]	DC
293.15	1.70	this work		TDT
297.90	2.09	Davidson & Cullen	[23]	WWA
298.00	1.86	Haimour & Sandall	[37]	LLJ
298.00	1.69	Duda & Vrentas	[29]	LLJ
298.00	1.92	Joosten & Danckwerts	[46]	LLJ
298.00	1.78	Sada et al.	[78]	LLJ
298.00	1.88	Versteeg & Van Swaaij	[96]	DC
298.00	1.80	Versteeg & Van Swaaij	[96]	DC
298.00	1.68	Samanta et al.	[79]	WWA
298.15	2.05	this work		TDT
302.90	2.27	Versteeg & Van Swaaij	[96]	DC
303.00	1.92	Samanta et al.	[79]	WWA
303.15	2.30	this work		TDT
303.80	2.35	Davidson & Cullen	[23]	WWA
308.00	2.03	Haimour & Sandall	[37]	LLJ
308.00	2.34	Versteeg & Van Swaaij	[96]	DC
308.00	2.26	Samanta et al.	[79]	WWA
312.90	2.35	Versteeg & Van Swaaij	[96]	DC
313.00	2.55	Duda & Vrentas	[29]	LLJ
313.00	2.58	Versteeg & Van Swaaij	[96]	DC
313.00	2.53	Samanta et al.	[79]	WWA
313.15	2.99	this work		TDT
318.00	3.17	Versteeg & Van Swaaij	[96]	DC
322.70	2.85	Versteeg & Van Swaaij	[96]	DC
323.15	4.02	this work		TDT
333.15	4.90	this work		TDT
340.00	5.33	Versteeg & Van Swaaij	[96]	DC
343.00	5.43	Versteeg & Van Swaaij	[96]	\mathbf{DC}
343.15	5.79	this work		TDT
353.00	6.32	Versteeg & Van Swaaij	[96]	DC
353.15	7.09	this work		TDT
		contin	nued or	n next page

Table 3.7: Diffusivity of N_2O in H_2O at various temperatures

 $$^a{\rm LLJ}$ = laminar liquid jet; DC = diaphragm cell; WWA = wetted wall absorber; TDT = Taylor dispersion technique$

continued from previous page

T / K	$D / 10^{-9} \cdot m^2 \cdot s^{-1}$	Reference	$Method^a$
363.15	8.23	this work	TDT
368.15	8.87	this work	TDT

 $^a\mathrm{LLJ}$ = laminar liquid jet; DC = diaphragm cell; WWA = wetted wall absorber; TDT = Taylor dispersion technique

3.3.5 Diffusivity of N₂O in aqueous PZ solutions

The experimental determined diffusivities of N_2O in (PZ + H₂O) were measured and averaged over at least three measurements from (293 to 333) K and (0.3 to 1.4) kmol·m⁻³. These results are presented in Table 3.8. The critical (De)²Sc number was found to be 80 for this system. The diffusivities were also calculated at different temperatures and concentration with the modified Stokes-Einstein relation [96]:

$$\frac{D_{N_2O \text{ in PZ sol.}}}{D_{N_2O \text{ in H_2O}}} = \left(\frac{\mu_{H_2O}}{\mu_{PZ \text{ sol.}}}\right)^{0.8} = \text{constant}$$
(3.13)

where the viscosities μ_{H_2O} and $\mu_{PZ \text{ sol.}}$ were taken from Lide [55] and Derks et al. [26], respectively. The viscosities from Derks et al. [26] were extrapolated to 333.15 K. The diffusivity of N₂O in H₂O was calculated by the equation presented by Versteeg & Van Swaaij [96]:

$$D_{N_2O \text{ in } H_2O} = 5.07 \cdot 10^{-6} exp\left(\frac{-2371}{T}\right)$$
 (3.14)

A Stokes-Einstein logarithmic plot for the diffusivity of N₂O in aqueous PZ solutions is shown in Figure 3.10. The modified Stokes-Einstein relation can be used to calculate N₂O diffusivities in aqueous PZ solutions satisfactorily from (293 to 333) K and up to approximately 1.4 kmol·m⁻³. The average and maximum absolute relative deviation between the experimental determined values and the calculated values are 3.0 % and 6.4 %, respectively. The diffusivity of CO₂ in an aqueous PZ solution can be estimated by the "N₂O analogy". [96]

Table 3.8: Diffusivity of N_2O in aqueous PZ solutions at various temperatures and solvent concentrations

$C_{}$ / kmol m ⁻³	Т / К							
CPZ / KIIIOI · III	293.15	298.15	303.15	313.15	323.15	333.15		
	$D_{N_2O} / 10^{-9} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-1}$							
0.295	1.44	1.60	1.83	2.41	2.99	3.61		
0.629	1.24	1.46	1.70	2.10	2.69	3.31		
1.067	1.13	1.32	1.54	2.00	2.47	3.00		
1.368	1.02	1.24	1.37	1.76	2.19	2.85		

Diffusivities of N₂O in aqueous PZ solutions have been reported by Samanta et al. [79] and Sun et al. [88] at 303 K and 313 K. These data are compared to the results from the present work at 303.15 K and 313.15 K in Figure 3.11 and the calculated values from the modified Stokes-Einstein relation. The values from the present work have a relative absolute average deviation of 2.4 % and 2.8 % from the calculated values at 303.15 K and 313.15 K, respectively. The

Figure 3.10: Stokes-Einstein plot for D_{N_2O} in aqueous PZ solutions: •, T = 293.15 K; \checkmark , T = 298.15 K; \blacktriangle , T = 303.15 K; \triangleleft , T = 313.15 K; \triangleright , T = 323.15 K; \diamondsuit , T = 333.15 K; The solid line represents equation (3.13) and the dashed lines represent $\pm 10\%$

values from Samanta et al. [79] deviates with 1.9 % and 5.6 % at 303 K and 313 K and the values of Sun et al. [88] deviates with 5.2 % and 3.0 %, respectively, from the calculated values. Samanta et al. [79] and Sun et al. [88] both used a wetted wall absorber to determine the diffusivities. Figure 3.11 shows that the method developed and described in the present work can be used to determine gas diffusivities in binary liquid systems with sufficient accuracy.

Figure 3.11: Comparison of D_{N_2O} to literature sources: •, T = 303.15 K present work; \mathbf{V} , T = 303 K Sun et. al [88]; \mathbf{A} , T = 303 K Samanta et al. [79]; ----, T = 303.15 K modified Stokes-Einstein; \circ , T = 313.15 K present work; ∇ , T = 313 K Sun et al. [88]; \triangle , T = 313 K Samanta et al. [79]; - - , T = 313.15 K modified Stokes-Einstein

3.4 Conclusion

The diffusion coefficient of piperazine in aqueous PZ solutions was measured at different PZ concentrations and temperatures using the Taylor dispersion technique. It was found that the modified Stokes-Einstein equation was able to predict the experimental diffusivities with an average deviation of less than 10 %. The diffusivities of MDEA and PZ were determined for an aqueous 4.0 kmol m⁻³ MDEA solution blended with 0, 0.5 and 1.0 kmol m⁻³ PZ at temperatures ranging from 298.15 to 338.15 K.

The diffusivities of N_2O in aqueous PZ solutions have been determined from (293 to 333) K and (0.3 to 1.4) kmol·m⁻³. The diffusivity of N_2O and CO_2 can be calculated and estimated respectively with a modified Stokes-Einstein relation.

Gas diffusivities can be measured by the taylor dispersion technique in a binary liquid system.

Chapter 4

Diffusivities in Aqueous Amino Acid Salt Solutions

4.1 Introduction

Aqueous solutions of amines are frequently used for the removal of acid gases, such as CO_2 and H_2S , from a variety of gas streams. In particular, aqueous solutions of alkanolamines and blends of alkanolamines are widely applied in gas treating. Alkanolamines can undergo degradation in oxygen atmosphere, usually encountered in the treatment of flue gases. The relative high volatility of alkanolamines also leads to losses of the compound during commercial operation of CO_2 capture plants. Aqueous amino acid salts solutions might be an attractive alternative to alkanolamines. They have been found to have better resistance to oxidative degradation, and their reactivity with CO_2 is comparable to aqueous alkanolamines of related classes. The ionic nature of aqueous amino acid salt solutions result in a negligible volatility. [50, 42, 70, 53, 93]

Knowledge of diffusion coefficients is neede for the design of absorbers and desorbers in a commercial CO₂ capture plant, as they are related to the mass transfer coefficients. They are also essential for a correct and accurate interpretation of many (lab scale) absorption rate experiments, e.g. experiments aimed to determine the intrinsic kinetics in a gas-liquid process. The liquid diffusivities in the aqueous solutions of the potassium salt of taurine, sarcosine, L-proline and glycine determined by the Taylor dispersion technique at temperatures from (293 to 368) K and concentration ranges from (0 to 3.0) kmol·m⁻³ are presented in this work. The diffusivities of N₂O in the same solutions determined with the same technique at temperatures from (293 to 333) K and concentration range from (1.0 to 3.0) kmol·m⁻³ are also presented. The results are correlated and compared to literature values.

The visocisoties of the potassium salt of sarcosine and L-proline have been determined from (298 to 333) K and from (0.5 to 3.0) kmol·m⁻³ for the potassium salt of sarcosine sarcosine and to 3.5 kmol·m⁻³ for the potassium salt of L-proline.¹ The liquid diffusivities in the aqueous solutions of the potassium salt of taurine, sarcosine, L-proline and glycine have been determined by the taylor

¹This work was carried out by Jacco van Holst. The results are given here for the convenience of the reader only.
dispersion technique at temperatures from (293 to 368) K and concentration ranges from (0 to 3.0) kmol·m⁻³. The diffusivities of N₂O in the same solutions have been determined with the same technique at temperatures from (293 to 333) K and concentration range from (1.0 to 3.0) kmol·m⁻³. The results are presented and correlated in the this work.

4.2 Theory and experimental procedures

4.2.1 Amino acid salt preparation

The respective aqueous amino acid salt solutions were prepared by adding equimolar amounts of the amino acid and KOH. The aqueous amino acid zwitterion will be deprotonated according to:

$$^{-}OOC - R - NH_3^+ + KOH \rightarrow K^+ + ^{-}OOC - R - NH_2 + H_2O$$
 (4.1)

and form a potassium amino acid salt. The concentration of the amino acid salt was checked by means of titration.

4.2.2 Viscositiy

The viscosities were measured using a PSL Ubbelohde viscometer (type ASTM-IP, size 0), submerged in a thermostatbath for temperature control within ± 0.1 K. ¹

4.2.3 General theory of the Taylor dispersion technique

The diffusivities were determined using the Taylor dispersion technique. A square pulse of a solute solution is injected into a solvent solution showing laminar flow through a capillary tube. The solute solution contains the same components as the solvent solution, but with a slightly higher concentration of the compound of which diffusivities are to be determined (an addition of approx. $0.05 \text{ kmol} \cdot \text{m}^{-3}$). In the case of gas measurements; the solute solution contains the same amounts of liquid components as the solvent solution, but with additional N_2O gas absorbed. As an example of liquid measurements; for measurements of diffusivities in a approx. $1.00 \text{ kmol} \cdot \text{m}^{-3}$ of K⁺taurine, the solvent solution would contain $1.00 \text{ kmol} \cdot \text{m}^{-3} \text{ K}^+$ taurine. The solute solution would contain 1.05 kmol·m⁻³ K⁺taurine, and a square pulse of this solution would be injected into the flowing solvent solution. For gas measurements at 1.00 $\text{kmol}\cdot\text{m}^{-3}$ of K⁺taurine, both the solvent and solute solution would contain 1.00 kmol·m⁻³ of K⁺taurine. The solute solution would contain additional absorbed N_2O_2 , and a square pulse of this solution would be injected into the flowing solvent. The combined action of axial convection and radial and axial molecular diffusion will eventually change the pulse into a gaussian curve. The theory, mathematical description and procedure of such diffusivity measurements have been described in detail by Taylor [89, 90], Aris [5] and in section 3.2.

The experimental setup used is shown schematically in Figure 4.1. Two vessels containing the solute solution and the solvent solution are kept under a

 $^{^{1}}$ This work was carried out by Jacco van Holst. The results are given here for the convenience of the reader only.

constant 5 bar pressure of saturated helium in order to create a constant flow of the solute and the solvent. Saturated helium is used in order to prevent any concentration changes in the solute and solvent solution as the liquid level in the two closed vessels containing the solutions decrease during a measurement due to the solution outflow. Introduction of a solute pulse is done by switching an air actuated six way valve back and forth within a few seconds. The capillary tube is elliptical coiled and placed in a water bath for temperature control. The flow velocity is controlled with mass flow controllers (Rosemount Flowmega 5881), located behind the refractive index (RI) detector (Varian 350 RI) and the six way pulse valve in order to obtain a constant pulsation-free solute and solvent solution flow throughout the measurement. In order to avoid bubble formation inside the tubing and a disturbance of the laminar fluid flow profile, especially at higher temperatures and/or during gas diffusion measurements, pressure reducers are located behind the RI detector and the six-way pulse valve. These reducers pressurizes the fluids inside the tubing to 4 bara. The influence of the pressure on the diffusion coefficients can be neglected for the pressure applied. [31, 59] Prior to each experiment, both the solute and solvent solution were degassed by applying vacuum for a while, and further the RI detector was calibrated. For gas diffusion measurements, N₂O was absorbed into the solute solution by bubbling the gas up to 1.5 bara into a closed vessel containing the solution. A computer is connected to the setup for control and data acquisition. The output signal from the RI detector is recorded as a function of time and used to determine the molecular diffusion coefficients. The RI detector showed a linear response to concentration changes of the potassium amino acid salts and N_2O in the solutions investigated. The dimensions of the experimental setup and the flow conditions are given in Table 4.1.

Figure 4.1: Schematic representation of the Taylor dispersion setup

A disturbance of the laminar fluid flow profile can occur due to the elliptic coiling of the tube. The varying path lengths traversed by the fluid at different radial positions in the tube and the secondary flows present in the flow can contribute additionally to the dispersion process. This topic has been extensively discussed by Alizadeh et al. [4] and Snijder et al. [86]. In order to avoid

Table 4.1: Dimensions of the experimental setup and flow conditions

		1
Length of the capillary tube	L	14.92 m
Inner radius of the capillary tube	R	$5.14 \cdot 10^{-4} \text{ m}$
Radius of the helical coil	R_C	0.1 m
Injection volume	V_{inj}	$(2.5 \text{ to } 4.1) \cdot 10^{-8} \text{ m}^3$
Liquid flow velocity	u	$(2 \text{ to } 6) \cdot 10^{-3} \text{ m} \cdot \text{s}^{-1}$

this disturbance, the critical $(De)^2Sc$ was determined for each system. The dimensionless $(De)^2Sc$ number is defined as:

$$De = Re \left(\frac{R_C}{R}\right)^{-1/2} \tag{4.2}$$

$$Sc = \frac{\mu}{\rho D} \tag{4.3}$$

where Re is the well-known Reynolds number and μ and ρ are the solvent viscosity and density. The other parameters are defined in Table 4.1. The measurements had to be carried out at a value of $(De)^2Sc$ lower than the critical one.

4.2.4 Liquid diffusivities

The results of liquid diffusivity measurements can be described by: [89, 90, 5]

$$C_m = \frac{N_{inj,AAS}}{2\pi R^2 \sqrt{\pi K_{AAS} t}} exp\left(-\frac{\left(L-ut\right)^2}{4K_{AAS} t}\right)$$
(4.4)

$$K_{AAS} = \frac{u^2 R^2}{48 D_{AAS}} + D_{AAS}$$
(4.5)

where C_m is the measured concentration profile at the end of the capillary tube, $N_{inj,AAS}$ is the excess number of moles of amino acid salt injected, t is the time, and D_{AAS} is the binary molecular diffusion coefficient. The subscript AAS refers to the aqueous amino acid salt. $N_{inj,AAS}$, u and D_{AAS} are the independent parameters used to curvefit equation (4.4) and (4.5) to the experimentally recorded results. The other parameters are defined in Table 4.1. Since the concentration of the solute pulse decreases because of dispersion while the solute pulse is traversing with the solvent through the tubing, an average concentration value has to be determined. Alizadeh et al. [4] referred to this as the reference concentration C_{ref} given by:

$$C_{ref} = C_{solv} + \frac{N_{inj,AAS} \left(\frac{5}{16} - \frac{1}{8\sqrt{\pi}}\right)}{\pi R^2 \sqrt{2K_{AAS}\dot{t}}}$$
(4.6)

where C_{solv} is the solvent concentration and \dot{t} is the time at which the measurement ends.

4.2.5 Gas diffusivity

The experimental procedure used to determine N_2O diffusivities in aqueous solutions by the Taylor dispersion technique has been given in detail in section 3.2. The recorded pulses are described by equation (4.7) to (4.9):

$$C_{m} = \frac{N_{inj,N_{2}O}}{2\pi R^{2} \sqrt{\pi K_{N_{2}Ot}}} exp\left(-\frac{(L-ut)^{2}}{4K_{N_{2}Ot}}\right) + \frac{N_{inj,AAS}}{2\pi R^{2} \sqrt{\pi K_{AAS}t}} exp\left(-\frac{(L-ut)^{2}}{4K_{AAS}t}\right) \quad (4.7)$$

$$K_{N_2O} = \frac{u^2 R^2}{48 D_{N_2O}} + D_{N_2O} \tag{4.8}$$

$$K_{AAS} = \frac{u^2 R^2}{48 D_{AAS}} + D_{AAS}$$
(4.9)

where C_m is the measured concentration profile, N_{inj,N_2O} and $N_{inj,AAS}$ are the respective numbers of moles of N₂O and excess number of moles of potassium amino acid salt injected, t is the time and D_{N_2O} and D_{AAS} are the respective molecular diffusion coefficients of N₂O and potassium amino acid salt in the aqueous potassium amino acid salt solution. The other parameters are defined in Table 4.1. The parameters N_{inj,N_2O} , $N_{inj,AAS}$, u and D_{N_2O} are the independent variables used to fit the equations to the experimental data. The value of D_{AAS} is from the previous measurement as aforementioned, and the influence of N₂O present in the current measurement on this value is neglected.

4.2.6 Chemicals

Taurine [107-35-7], sarcosine [107-97-1], glycine [56-40-6], L-proline [147-85-3], KOH [1310-58-3] (Sigma-Aldrich), N₂O [10024-97-2] and helium [7440-59-7] (Linde Gas) were used as supplied. Water was demineralized and further purified by vacuum distillation.

4.3 **Results and discussion**

4.3.1 Viscosity

Experimentally determined values of the viscosities of potassium salt of sarcosine and L-proline at temperatures from (298.18 to 333.15) K and concentrations from (0.5 to 3.0) kmol \cdot m⁻³ for aqueous potassium salt of sarcosine and from (0.5 to 3.5) kmol \cdot m⁻³ for aqueous potassium salt of L-proline are listed in Table 4.2.¹ The experimental error is estimated to ±1%.

 $^{^1{\}rm These}$ experimental values are measured by Jacco van Holst. The results are given here for the convenience of the reader only.

			Т / К		
	298.15	303.15	313.15	323.15	333.15
$C_{\rm K^+sarcosine}$ / kmol \cdot m ⁻³		μ_{K^+sar}		nPa · s	
0.51	1.045	0.935	0.762	0.636	0.543
1.02	1.246	1.112	0.915	0.789	0.635
1.53	1.518	1.346	1.076	0.887	0.745
2.02	1.833	1.611	1.291	1.055	0.880
2.44	2.201	1.913	1.514	1.220	1.016
2.99	2.868	2.508	1.967	1.588	1.264
$C_{\rm K^+L\text{-proline}} \ / \ {\rm kmol} \cdot {\rm m}^{-3}$		$\mu_{\mathrm{K^+L}}$	_{oroline} / n	nPa · s	
0.51	1.107	0.986	0.799	0.664	0.565
1.01	1.400	1.242	0.992	0.816	0.685
1.52	1.811	1.590	1.251	1.017	0.846
2.01	2.365	2.061	1.599	1.286	1.061
2.52	3.163	2.721	2.076	1.636	1.331
2.98	4.112	3.516	2.664	2.068	1.658
3.45	5.732	4.837	3.587	2.767	2.181

Table 4.2: Viscosities of aqueous potassium salts of sarcosine and L-proline

4.3.2 Liquid diffusivity

Values of the liquid diffusivities in aqueous potassium salt solutions of taurine, sarcosine, L-proline and glycine were measured and averaged over at least three measurements from (293 to 368) K and (0 to 3.0) kmol·m⁻³. The results are presented in Table 4.4. The critical $(De)^2Sc$ number was found to be 100 for these system.

The theory of diffusion of aqueous salts at low concentration is well developed. [73] For dilute solutions of a single salt, the diffusion coefficient can be estimated by the Nernst-Haskell equation:

$$D^{0} = \frac{RT\left[(1/z_{+}) + (1/z_{-})\right]}{F^{2}\left[(1/\lambda_{+}^{0}) + (1/\lambda_{-}^{0})\right]}$$
(4.10)

where D^0 is the diffusion coefficient at infinite dilution, R is the gas constant, T is the temperature, F is the faraday constant, λ^0_+ and λ^0_- are the limiting ionic conductivities and z_+ and z_- are the respective valences of the cation and anion. In the case of the potassium salt of glycine at 298.15 K; limiting ionic conductivities have been reported by D'yachkova et al. [30], Miyamoto & Schmidt [64] and Mehl & Schmidt [61] for deprotonated glycine (anion structure). These values are listed in Table 4.3. The limiting ionic conductivity of the

Table 4.3: Limiting ionic conductivities estimated diffusivities

Table 1.9. Emining Joine conductivities estimated amasivities					
	λ_{-}^{0}	$D_{\rm est,K^+glycine}$	$D_{\rm K^+ glycine}$	rel. dev.	
	$\mathrm{cm}^2\cdot\Omega^{-1}\cdot\mathrm{mol}^{-1}$	$10^{-9} \cdot m^2 \cdot s^{-1}$	$10^{-9} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-1}$	%	
D'yachkova et al. [30]	24.5	0.979	1.11	-11.8	
Miyamoto & Schmidt [64]	30.0	1.13	1.11	-1.8	
Mehl & Schmidt [61]	39.2	1.36	1.11	22.5	

potassium ion is reported by Poling et al. [73] to be 73.5 cm² · Ω^{-1} ·mol⁻¹. By the use of these values and equation (4.10), the respective estimated diffusivities at infinite dilution, $D_{\text{est},\text{K}^+\text{glycine}}$, are calculated and listed in Table 4.3. From Table 4.4; the experimentally determined value, $D_{\text{K}^+\text{glycine}}$, is $1.11\cdot10^{-9} \text{ m}^2 \cdot \text{s}^{-1}$. The relative deviation between the estimated and the experimental values are listed in Table 4.3. The limiting ionic conductivity of $39.2 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$ from Mehl & Schmidt [61] is most likely too high [77] for an ion of the size of deprotonated glycine. This can explain the relative deviation of 22.5 %. In the absence of limiting ionic conductivities of deprotonated taurine, sarcosine and L-proline ions, diffusivities at infinite dilutione are not estimated for these salts. At higher concentrations, salt diffusivities can be estimated [73] by the additional use of viscosities, solvent partial molar volume and molar density and mean ionic activity coefficients. As some of these properties are not readily available for the considered salts, such estimations are not further investigated in the present work.

T	$D_{\rm K^+taurine}$	$C_{\rm ref,K^+taurine}$	$D_{\rm K^+sarcosine}$	$C_{\rm ref,K^+sarcosine}$
K	$10^{-9}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-1}$	$\mathrm{kmol}\cdot\mathrm{m}^{-3}$	$10^{-9}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-1}$	$\mathrm{kmol}\cdot\mathrm{m}^{-3}$
293.15	1.01	$0.3 \cdot 10^{-3}$	0.961	$0.9 \cdot 10^{-3}$
	0.975	0.937	0.945	0.970
	0.936	1.87	0.893	1.99
	0.884	2.71	0.865	2.91
298.15	1.13	$0.3 \cdot 10^{-3}$	1.10	$0.1 \cdot 10^{-2}$
	1.11	0.938	1.04	0.970
	1.07	1.87	0.993	1.99
	1.00	2.72	0.982	2.91
303.15	1.26	$0.4 \cdot 10^{-3}$	1.23	$0.1 \cdot 10^{-2}$
	1.24	0.938	1.19	0.971
	1.20	1.87	1.18	1.99
	1.14	2.72	1.11	2.91
313.15	1.56	$0.4 \cdot 10^{-3}$	1.54	$0.1 \cdot 10^{-2}$
	1.53	0.939	1.50	0.971
	1.48	1.88	1.45	1.99
	1.40	2.72	1.39	2.91
323.15	1.92	$0.4 \cdot 10^{-3}$	1.89	$0.1 \cdot 10^{-2}$
	1.89	0.939	1.85	0.972
	1.80	1.88	1.80	1.99
	1.71	2.72	1.73	2.91
333.15	2.29	$0.5 \cdot 10^{-3}$	2.34	$0.2 \cdot 10^{-2}$
	2.25	0.940	2.27	0.972
	2.16	1.88	2.18	1.99
	2.05	2.72	2.08	2.91
343.15	2.71	$0.5 \cdot 10^{-3}$	2.71	$0.2 \cdot 10^{-2}$
	2.65	0.94	2.66	0.973
	2.54	1.89	2.52	1.99

Table 4.4: Liquid diffusion coefficients in aqueous amino acid salt solutions at various temperatures and concentrations

continued on next page

continue	ed from previous pa	nge			
	2.41	2.73	2.44	2.92	
353.15	3.17	$0.6 \cdot 10^{-3}$	3.13	$0.2 \cdot 10^{-2}$	
	3.05	0.940	3.09	0.974	
	2.95	1.89	2.93	1.99	
	2.79	2.73	2.86	2.92	
363.15	3.66	$0.6 \cdot 10^{-3}$	3.56	$0.2 \cdot 10^{-2}$	
	3.48	0.942	3.53	0.974	
	3.36	1.90	3.38	1.99	
	3.19	2.73	3.27	2.92	
368.15	3.93	$0.6 \cdot 10^{-3}$	3.85	$0.3 \cdot 10^{-2}$	
	3.73	0.942	3.77	0.975	
	3.59	1.90	3.64	1.99	
	3.40	2.73	3.49	2.92	
T	$D_{\rm K^+L-proline}$	$C_{\rm ref,K^+L-proline}$	$D_{\rm K^+ glycine}$	$C_{\rm ref,K^+glycine}$	
$\overline{\mathrm{K}}$	$\overline{10^{-9}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-1}}$	$ m kmol \cdot m^{-3}$	$10^{-9} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-1}$	$ m kmol \cdot m^{-3}$	
293.15	0.924	$0.4 \cdot 10^{-1}$	0.999	$0.5 \cdot 10^{-3}$	
	0.840	1.03	1.05	1.07	
	0.760	1.95	1.07	2.02	
	0.605	2.97	1.04	3.09	
298.15	1.04	$0.5 \cdot 10^{-1}$	1.11	$0.5 \cdot 10^{-3}$	
	0.959	1.04	1.20	1.07	
	0.870	1.96	1.25	2.02	
	0.719	2.97	1.18	3.09	
303.15	1.17	$0.5 \cdot 10^{-1}$	1.25	$0.6 \cdot 10^{-3}$	
	1.08	1.04	1.37	1.07	
	0.988	1.96	1.41	2.02	
	0.819	2.97	1.37	3.09	
313.15	1.48	$0.5 \cdot 10^{-1}$	1.56	$0.6 \cdot 10^{-3}$	
	1.35	1.04	1.70	1.07	
	1.25	1.96	1.72	2.03	
	1.05	2.97	1.68	3.09	
323.15	1.81	$0.6 \cdot 10^{-1}$	1.91	$0.7 \cdot 10^{-3}$	
	1.68	1.04	2.11	1.07	
	1.56	1.96	2.13	2.03	
000.15	1.34	2.97	2.11	3.09	
333.15	2.18	$0.6 \cdot 10^{-1}$	2.28	$0.8 \cdot 10^{-5}$	
	2.02	1.04	2.50	1.07	
	1.88	1.96	2.53	2.03	
949.15	1.03	2.98	2.44	3.09	
343.15	2.55	0.7.10	2.70	0.9.10	
	∠.39 0.00	1.04	2.93	1.07	
	2.22	1.90	2.94	2.00 2.00	
959 15	1.94	2.98	2.88 2.11	0.09 0.0.10-3	
353.15	2.93	0.8.10	3.11	0.9.10	

 $continued \ on \ next \ page$

continued from previous page					
	2.78	1.05	3.36	1.07	
	2.59	1.97	3.40	2.03	
	2.28	2.98	3.30	3.09	
363.15	3.42	$0.8 \cdot 10^{-1}$	3.56	$0.1 \cdot 10^{-2}$	
	3.18	1.05	3.88	1.07	
	2.98	1.97	3.86	2.03	
	2.64	2.98	3.73	3.09	
368.15	3.66	$0.9 \cdot 10^{-1}$	3.82	$0.1 \cdot 10^{-2}$	
	3.42	1.05	4.14	1.07	
	3.19	1.97	4.11	2.03	
	2.84	2.99	3.95	3.09	

4.3.3 Gas diffusivity

The experimental determined diffusivities of N₂O in aqueous potassium salt solutions of taurine, sarcosine, L-proline and glycine were measured and averaged over at least three measurements each from (293 to 333) K and (1.0 to 3.0) kmol·m⁻³. These results are presented in Table 4.5. The critical (De)²Sc number was found to be 80 for these systems.

Several investigators have correlated the diffusion of an inert gas in an aqueous salt solution to the viscosity or the salt concentration. [75, 36, 43, 16, 52] Ratcliff & Holdcroft [75], Brilman et al. [16] and Kumar et al. [52] correlated the diffusivities to the viscosities by a modified Stokes-Einstein relation:

$$\frac{D_{N_2O \text{ in AAS}}}{D_{N_2O \text{ in H}_2O}} = \left(\frac{\mu_{H_2O}}{\mu_{AAS}}\right)^{\alpha} = \text{constant}$$
(4.11)

where α is a constant. Ratcliff & Holdcroft [75] found this value to be 0.637, whereas Brilman et al. [16] found it to be 0.6. Kumar et al. [52] found the value to be 0.74. A α value of 0.6 was found to predict the diffusivities within an average and maximum absolute relative deviation of 5.7 % and 15.1 %, respectively. The viscosities were taken from Kumar et al. [52], Portugal et al. [74], Lide [55] and Table 4.2. The diffusivity of N₂O in H₂O was taken from Versteeg & van Swaaij [96]. The correlation is presented in Figure 4.2 for the aqueous amino acid salt solutions. Diffusivities of CO₂ in aqueous amino acid salt solutions can be estimated by the "N₂O analogy" [96].

Kumar et al. [52] reported diffusivities of N_2O in aqueous solutions of the potassium salt of taurine at 293 K. The results [52] are compared to the results from the present work at 293.15 K in Figure 4.3 and the estimated values from the modified Stokes-Einstein relation at 293.15 K. The values from the present work have an absolute average and maximum deviation of 4.55 % and 6.11 % from the calculated values from the modified Stokes-Einstein relation at 293.15 K, respectively. The values of Kumar et al. [52] deviates by 4.77 % and 10.48 %.

4.4 Conclusion

Liquid diffusivities of aqueous potassium salts of taurine, sarcosine, L-proline and glycine have been determined from (293 to 368) K and (0 to 3.0) kmol·m⁻³.

	$T \mid K$					
	293.15	298.15	303.15	313.15	323.15	333.15
$C_{\rm K^+taurine} / \rm kmol \cdot m^{-3}$		Ι	$D_{N_2O} / 10$	$)^{-9} \cdot m^2 \cdot s^-$	1	
0.920	1.49	1.65	1.80	2.21	2.73	3.43
1.87	1.24	1.35	1.51	1.87	2.38	2.73
2.78	1.01	1.10	1.23	1.54	1.87	2.24
$C_{\rm K^+sarcosine} / \rm kmol \cdot m^{-3}$		Ι	$D_{N_2O} / 10$	$)^{-9} \cdot m^2 \cdot s^-$	1	
0.953	1.42	1.57	1.76	2.20	2.59	3.13
1.94	1.18	1.28	1.40	1.73	2.14	2.57
2.98	0.889	1.02	1.21	1.51	1.81	2.25
$C_{\rm K^+L-proline} / \rm kmol \cdot m^{-3}$		Ι	$D_{N_2O} / 10$	$)^{-9} \cdot m^2 \cdot s^-$	1	
1.05	1.22	1.35	1.56	1.93	2.47	2.92
2.05	0.896	0.999	1.16	1.45	1.76	2.23
3.03	0.689	0.792	0.907	1.14	1.49	1.75
$C_{\rm K^+glycine} \ / \ {\rm kmol \cdot m^{-3}}$		Ι	$D_{N_2O} / 10$	$)^{-9} \cdot m^2 \cdot s^-$	1	
1.08	1.49	1.62	1.79	2.19	2.66	3.19
2.09	1.32	1.44	1.65	1.92	2.30	2.83
3.10	1.13	1.25	1.44	1.77	2.22	2.57

Table 4.5: Diffusivity of N_2O in aqueous amino acid salt solutions at various temperatures and solvent concentrations

Figure 4.2: Stokes-Einstein plot for D_{N_2O} in aqueous amino acid salt solutions: •, K⁺taurine; \checkmark , K⁺sarcosine; \blacktriangle , K⁺L-proline; \blacktriangleleft , K⁺glycine; The solid line represents equation (4.11) with $\alpha = 0.6$ and the dashed lines represents $\pm 10\%$

Figure 4.3: Comparison of D_{N_2O} in aqueous potassium taurine salt to literature values at 293.15 K: •, present work; $\mathbf{\vee}$, Kumar et al. [52]; ----, modified Stokes-Einstein relation

The diffusivities at infinite dilution can be estimated by the Nernst-Haskell equation if limiting ionic conductivity data are available.

Diffusivities of N₂O in aqueous amino acid salt solutions of taurine, sarcosine, L-proline and glycine have been determined from (293 to 333) K and (1.0 to 3.0) kmol·m⁻³. The diffusivities are in agreement with available litterature values. The diffusivities can be estimated using a modified Stokes-Einstein relation, and the diffusivities of CO_2 in these solutions can be further calculated.

Chapter 5

Mass transfer in absorption and desorption processes

5.1 Summary

A post-combustion capture plant is in its design depended on absorption and desorption processes of CO_2 and/or H_2S gas. As most attention in research has been given to the absorption stage of such a plant, important and useful research results can be gained by focusing research about the desorption stage. As opposite to absorption, desorption takes place at higher temperatures and not necessarily atmospheric pressure. [50] This is due to the thermodynamic conditions needed for parts of the gas compound to leave the liquid phase and enter the gas phase. [83]

The purpose of this research was to investigate absorption and desorption processes at the same operating conditions, e.g. temperature, pressure, etc., to see if these processes are mirror processes of each other.

A stirred cell setup has been built. All parameters and conditions involved in the mass transfer can be kept constant, e.g. surface area, liquid volume and flow, gas volume and flow, etc. Preliminary results from this setup is reported below. Because of a significant delay of the construction of the setup there are no more experimental results available. The author of this report disclaim the responsibility of this delay as it was caused by interference outside of the control of the author.

5.2 Preliminary results

In order to be familiar with the stirred cell reactor, mass transfer coefficients (k_L) have to be determined a different stirrer speeds and liquid level, and it is shown in Figure 5.1. The reactor dimensions are given in Table 5.1.

Table 5.1: Dimension	n of reactor
Rector volume V	$4.276 \ {\rm dm^3}$
Reactor diameter d	$1.389 \mathrm{~dm}$

Figure 5.1: Mass transfer coefficient as a function of reactor liquid level and stirrer speed. •, high liquid level $V_{liq} = 2.38 \text{ dm}^3$; \checkmark , medium liquid level $V_{liq} = 2.17 \text{ dm}^3$; \blacktriangle , low liquid level $V_{liq} = 1.98 \text{ dm}^3$;

The 'm' value for CO_2 in water was also determined in order to check the performance of the stirred cell. This is important since these types of stirred cells are operated at underpressure. The 'm' value was measured to be 0.82, and this is well in line with values of Versteeg & Van Swaaij [96].

Final conclusion

In the present report values are reported for dissociation constant and liquid and gas diffusion constant of amino acid selected as potential CO_2 absorbents. The dissociation constants are reported as a function of temperature, and further thermodynamic properties are derived. Diffusion coefficients are reported as a function of temperature and concentration. These values give insight into the use of amino acid salts as CO_2 absorbents. Additionally, liquid and gas diffusion coefficients are reported for the aqueous PZ and (PZ + MDEA) solutions. The report also gives a short summary of the work carried out regarding absorption and desorption processes.

Espen Steinsth Hamborg Enschede, 31.12.2007

Bibliography

- [1] CO_2 capture, transport and storage in the netherlands, www.co2-cato.nl, 2007.
- [2] Á. P-S. Kamps and G. Maurer. Dissociation constant of Nmethyldiethanolamine in aqueous solution at temperatures from 278 K to 368 K. J. Chem. Eng. Data, 41:1505–1513, 1996.
- [3] A. Albert. Quantitative studies of the avidity of naturally occuring substances for trace metals. 2. Amino-acids having three ionizing groups. *Biochem. J.*, 50:690–698, 1952.
- [4] A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham. The Theory of the Taylor Dispersion Technique for Liquid Diffusivity Measurements. *Int. J. Thermophys.*, 1:243–283, 1980.
- [5] R. Aris. On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. Lond. A, 235:67–77, 1956.
- [6] H. A. Azab, A. M. El-Nady, S. A. El-Shatoury, and A. Hassan. Potentiometric determination of the dissociation constants of L-histidine, proline and tryptophane in various hydroorganic media. *Talanta*, 41:1255–1259, 1994.
- [7] A. C. Batchelder and C. L. Schmidt. The effects of certain salts on the dissociation of aspartic acid, arginine, and ornithine. J. Phys. Chem., 44:893–909, 1940.
- [8] R. G. Bates and G. F. Allen. Acidic dissociation constant and related thermodynamic quantities for triethanolammonium ion in water from 0° to 50°C. J. Res. Nat. Bur. Std., 64A:343–346, 1960.
- [9] R. G. Bates and G. D. Pinching. Acidic dissociation constant and related thermodynamic quantities for monoethanolammonium ion in water from 0° to 50°C. J. Res. Nat. Bur. Std., 46:349–352, 1951.
- [10] S. Bishnoi and G. T. Rochelle. Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine. AIChE J., 48:2788–2799, 2002.
- [11] P. M. M. Blauwhoff, G. F. Versteeg, and W. P. M. Van Swaaij. A study on the reaction between CO₂ and alkanolamines in aqueous solutions. *Chem. Eng. Sci.*, 39:207–225, 1984.

- [12] V. E. Bower, R. A. Robinson, and R. G. Bates. Acidic dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0° to 50° C. J. Res. Nat. Bur. Std., 66A:71–75, 1962.
- [13] S. Boyd, J. R. Brannan, H. S. Dunsmore, and G. H. Nancollas. Thermodynamics of ion association, transition-metal β-alanine and glycine complexes. J. Chem. Eng. Data, 12:601–605, 1967.
- [14] D. J. Bradley and K. S. Pitzer. Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hückel parameters to 350 °C and 1 kbar. J. Phys. Chem., 83:1599–1603, 1979.
- [15] I. Brandariz, S. Fiol, R. Herrero, T. Vilariño, and M. S. de Vicente. Protonation constants of β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid. J. Chem. Eng. Data, 38:531–533, 1993.
- [16] D. W. F. Brilman, W. P. M. van Swaaij, and G. F. Versteeg. Diffusion coefficient and solubility of isobutene and trans-2-butene in aqueous sulfuric acid solutions. J. Chem. Eng. Data, 46:1130–1135, 2001.
- [17] J. N. Butler and R. N. Roy. Experimental Methods: Potentiometric, pages 155–208. CRC Press, Boca Raton, Ann Arbor, Boston, London, 2nd edition, 1997. Editor: K. S. Pitzer.
- [18] J. J. Christensen, R. M. Izatt, D. P. Wrathall, and L. D. Hansen. Thermodynamics of proton ionization in dilute aqueous solution. Part XI. pK, ΔH°, and ΔS° Values for proton ionization from protonated amines at 25°. J. Chem. Soc. (A), pages 1212–1223, 1969.
- [19] R. G. F. Clarke, C. M. Collins, J. C. Roberts, L. N. Trevani, R. J. Bartholomew, and P. R. Tremaine. Ionization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and proline. *Geochim. Cos*mochim. Acta, 69:3029–3043, 2005.
- [20] P. V. Danckwerts. The reacion of CO₂ with ethanolamines. *Chem. Eng. Sci.*, 34:443–446, 1979.
- [21] S. P. Datta and A. K. Grzybowski. The second acid dissociations of glycine, sarcosine and N-dimethylglycine, part 1. Thermodynamic dissociation constants. *Trans. Faraday Soc.*, 54:1179–1187, 1958.
- [22] S. P. Datta and A. K. Grzybowski. The second acid dissociations of glycine, sarcosine and N-methylglycine, part 2. Thermodynamic quantities. *Trans. Faraday Soc.*, 54:1188–1194, 1958.
- [23] J. F. Davidson and E. J. Cullen. The determination of diffusion coefficients of sparingly soluble gases in liquids. *Trans. Inst. Chem. Engrs.*, 35:51–60, 1957.
- [24] C. W. Davies. Ion Association. Butterworths, London, 1962.
- [25] P. W. J. Derks. Carbon Dioxide Absorption in Piperazine Activated N-Methyldiethanolamine. PhD thesis, University of Twente, 2006.

- [26] P. W. J. Derks, J. A. Hogendoorn, and G. F. Versteeg. Solubility of n₂0 in and density, viscosity, and surface tension of aqueous piperazine solutions. *J. Chem. Eng. Data*, 50:1947–1950, 2005.
- [27] P. W. J. Derks, T. Kleingeld, C. van Aken, J. A. Hogendoorn, and G. F. Versteeg. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. *Chem. Eng. Sci.*, 61:6837–6854, 2006.
- [28] B. P. Dey, S. Dutta, and S. C. Lahiri. Dissociation constants of amino acids in isopropanol + water mixtures. *Indian J. Chem.*, 21A:886–890, 1982.
- [29] J. L. Duda and J. S. Vrentas. Laminar liquid jet diffusion studies. AIChE J., 14:286–294, 1968.
- [30] N. G. D'yachkova, L. A. Zagorodnykh, and O. V. Bobreshova. Conductivity of systems comprising anion-exchange membranes ma-41 and alkaline glycine solutions. *Russ. J. Electrochem.*, 42:276–279, 2006.
- [31] A. J. Easteal and L. A. Woolf. Pressure and temperature dependence of tracer diffusion coefficients of methanol, ethanol, acetonitrile, and formamide in water. J. Phys. Chem., 89:1066–1069, 1985.
- [32] D. H. Everett and W. F. K. Wynne-Jones. The thermodynamics of acidbase equilibriad. *Trans. Faraday Soc.*, 35:1380–1400, 1939.
- [33] J. R. Fisher and H. L. Barnes. The ion-product constant of water to 350°. J. Phys. Chem., 76:90–99, 1972.
- [34] S. E. Gillespie, J. L. Oscarson, R. M. Izatt, P. Wang, J. A. R. Renuncio, and C. Pando. Thermodynamic quantities for the protonation of amino acid amino groups from 323.15 to 398.15 K. J. Sol. Chem., 24:1219–1247, 1995.
- [35] T. Grossmann and J. Winkelmann. Ternary diffusion coefficients of glycerol + acetone + water by taylor dispersion measurements at 298.15 k. J. Chem. Eng. Data, 50:1396–1403, 2005.
- [36] K. E. Gubbins, K. K. Bhatia, and R. D. Walker. Diffusion of gases in electrolytic solutions. *AIChE J.*, 12:548–552, 1966.
- [37] N. Haimour and O. C. Sandall. Absorption of carbon dioxide into aqueous methyldiethanolamine. *Chem. Eng. Sci.*, 39:1791–1796, 1984.
- [38] W. Hayduk and H. Laudie. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J., 20:611–615, 1974.
- [39] W. Hayduk and B. S. Minhas. Correlations for prediction of molecular diffusivities in liquids. *Can. J. Chem. Eng.*, 60:295–298, 1982.
- [40] H. B. Hetzer, R. A. Robinson, and R. G. Bates. Dissociation constants of piperazinium ion and related thermodynamic quantities from 0 to 50°. J. Phys. Chem., 72:2081–2086, 1968.

- [41] H. F. Holmes, R. H. Busey, J. M. Simonson, R. E. Mesmer, D. G. Archer, and R. H. Wood. The enthalpy of dilution of HCl(aq) to 648 K and 40 MPa, thermodynamic properties. *J. Chem. Thermodyn.*, 19:863–890, 1987.
- [42] R. J. Hook. An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind. Eng. Chem. Res., 36:1779– 1790, 1997.
- [43] G. W. Hung and R. H. Dinius. Diffusivity of oxygen in electrolyte solutions. J. Chem. Eng. Data, 17:449–451, 1972.
- [44] R. M. Izatt, J. L. Oscarson, S. E. Gillespie, H. Grimsrud, J. A. R. Renuncio, and C. Pando. Effect of temperature and pressure on the protonation of glycine. *Biophys. J.*, 61:1394–1401, 1992.
- [45] R. M. Izatt, J. W. Wrathall, and K. P. Anderson. Studies of the copper(II)-alanine and phenylalanine systems in aqueous solution. Dissociation and formation constants as a function of temperature. J. Phys. Chem., 65:1914–1915, 1961.
- [46] G. E. H Joosten and P. V. Danckwerts. Solubility and Diffusivity of Nitrous Oxide in Equimolar Potassium Carbonate-Potassium Bicarbonate Solutions at 25°C and 1 Atm. J. Chem. Eng. Data, 17:452–454, 1972.
- [47] J-H. Kim, C. Dobrogowska, and L. G. Hepler. Thermodynamics of ionization of aqueous alkanolamines. Can. J. Chem., 65:1726–1728, 1987.
- [48] E. J. King. The ionization constants of glycine and the effect of sodium chloride upon its second ionization. J. Am. Chem. Soc., 73:155–159, 1951.
- [49] E. J. King. The ionization constants of taurine and its activity coefficient in hydrochloric acid solutions from electromotive force measurements. J. Am. Chem. Soc., 75:2204–2209, 1953.
- [50] A. L. Kohl and R. B. Nielsen. Gas Purification. Gulf Publishing Company, Houston, 5th edition, 1997.
- [51] P. S. Kumar. Development and Design of Membrane Gas Absorption Processes. PhD thesis, University of Twente, 2002.
- [52] P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, and G. F. Versteeg. Density, viscosity, solubility, and diffusivity of n₂0 in aqueous amino acid salt solutions. *J. Chem. Eng. Data*, 46:1357–1361, 2001.
- [53] P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, and P. H. M. Feron. Kinetics of the reaction of CO₂ with aqueous potassium salt of taurine and glycine. *AIChE J.*, 49:203–213, 2003.
- [54] Y. E. Lee and F. Y. Li. Binary diffusion coefficients of the methanol/water system in the temperature range of 30°- 40°C. J. Chem. Eng. Data, 36:240-243, 1991.
- [55] D. R. Lide. Handbook of chemistry and physics. CRC Press, 75th edition, 1994.

- [56] R. J. Littel, M. Bos, and G. J. Knoop. Dissociation constants of some alkanolamines at 293, 303, 318, and 333 K. J. Chem. Eng. Data, 35:276– 277, 1990.
- [57] K. Majumdar and S. C Lahiri. Studies on the dissociation constants of amino acids in dioxane + water mixtures at 298 K. Indian J. Chem., 74:382–386, 1997.
- [58] M. A. Matthews and A. Akgerman. Infinite dilution diffusion coefficients of methanol and 2-propanol in water. J. Chem. Eng. Data, 33:122–123, 1988.
- [59] M. A. Matthews and A. J. Akgerman. High-temperature diffusion of hydrogen, carbon monoxide, and carbon dioxide in liquid n-heptane, ndodecane, and n-hexadecane. J. Chem. Eng. Data, 32:319, 1987.
- [60] M. May and W. A. Felsing. The ionization constants of β-alanine in water and isopropyl alcohol-water mixtures. J. Am. Chem. Soc., 73:406–409, 1951.
- [61] J. W. Mehl and C. L. A. Schmidt. The conductivities of aqueous solutions of glycine, d,l-valine, and l-aspargine. J. General Physiol., 18:467–479, 1935.
- [62] D. G. Miller. Application of irreversible thermodynamics to electrolyte solutions. II. Ionic coefficients l_{ij} for isothermal vector transport processes in ternary systems. J. Phys. Chem., 71:616–632, 1967.
- [63] D. G. Miller. Application of irreversible thermodynamics to electrolyte solutions. III. Equations for isothermal vector transport processes in *n*component systems. J. Phys. Chem., 71:3588–3592, 1967.
- [64] S. Miyamoto and C. L. A. Schmidt. Transference and conductivity studies on solutions of certain proteins and amino acids with special reference to the formation of complex ions between the alkaline earth elements and certain proteins. J. Biol. Chem., 99:335–358, 1933.
- [65] J. L. Oscarson, G. Wu, P. W. Faux, R. M. Izatt, and J. J. Christensen. Thermodynamics of protonation of alkanolamines in aqueous solution to 325°C. *Thermochim. Acta*, 154:119–127, 1989.
- [66] D. F. Othmer and M. S. Thakar. Correlating diffusion coefficients in liquids. Ind. Eng. Chem., 45:589–593, 1953.
- [67] B. B. Owen. The dissociation constants of glycine at various temperatures. J. Am. Chem. Soc., 56:24–27, 1934.
- [68] R. T. Pabalan and K. S. Pitzer. Apparent molar heat capacity and other thermodynamic properties of aqueous KCl solutions to high temperatures and pressures. J. Chem. Eng. Data, 33:354–362, 1988.
- [69] S. Pelletier. No 21. contribution a létude des complexes métalliques des amino-acides III. Détermination des constants de formation des complexes Ni⁺⁺-méthionine et Ni⁺⁺-sérine à différentes temperatures. J. chim. phys. phys.-chim biol., 57:301–305, 1960. in French.

- [70] D. E. Penny and T. J. Ritter. Kinetic study of the reaction between carbon dioxide and primary amines. J. Chem. Soc., Faraday Trans., 79:2103– 2109, 1983.
- [71] K. S. Pitzer. Thermodynamics of electrolytes. 1. Theoretical basis and general equations. J. Phys. Chem., 77:268–277, 1973.
- [72] K. S. Pitzer. Ion interaction approach: Theory and data correlation, pages 75–153. CRC Press, Boca Raton, Ann Arbor, Boston, London, 2nd edition, 1997. Editor: K. S. Pitzer.
- [73] B. E. Poling, J. M. Prausnitz, and J. P. O'Connell. The Properties of Gases and Liquids. The McGraw-Hill Companies, Inc., 5th edition, 2001.
- [74] A. F. Portugal, P. W. J. Derks, G. F. Versteeg, F. D. Magalhães, and A. Mendes. Characterization of potassium glycinate for carbon dioxide absorption purposes. *Chem. Eng. Sci.*, 62:6534–6547, 2007.
- [75] G. A. Ratcliff and J. G. Holdcroft. Diffusivities of gases in aqueous electrolyte solutions. *Trans. Instn Chem. Engrs.*, 41:315–319, 1963.
- [76] E. B. Rinker, D. W. Oelschlager, A. T. Colussi, K. R. Henry, and O. C. Sandall. Viscosity, density, and surface tension of binary mixtures of water and n-methyldiethanolamine and water and diethanolamine and tertiary mixtures of these amines with water over the temperature range 20-100 °C. J. Chem. Eng. Data, 39:392–395, 1994.
- [77] R. A. Robinson and R. H. Stokes. *Electrolyte Solutions*. Butterworths, London, 2nd edition, 1959.
- [78] E. Sada, H. Kumazawa, and M. A. Butt. Solubilities of Gases in Aqueous Solutions of Amine. J. Chem. Eng. Data, 22:277–278, 1977.
- [79] A. Samanta, S. Roy, and S. S. Bandyopadhyay. Physical Solubility and Diffusivity of N₂O and CO₂ in Aqueous Solutions of Piperazine and (*N*-Methyldiethanolamine + Piperazine). J. Chem. Eng Data, 52:1381–1385, 2007.
- [80] A. Saul and W. Wagner. International equations for the saturation properties of ordinary water substances. J. Phys. Chem. Ref. Data, 16:893–901, 1987.
- [81] G. B. Scheibel. Liquid diffusivities. Ind. Eng. Chem., 46:2007–2008, 1954.
- [82] K. Schwabe, W. Graichen, and D. Spiethoff. Physicochemical investigations on alkanolamines. Zeits. Phys. Chem. (Munich), 20:68–82, 1959. in German.
- [83] J. D. Seader and E. J. Henley. Separation process principles. John Wiley & Sons, Inc, 1st edition, 1998.
- [84] E. R. B. Smith and P. K. Smith. Thermodynamic properties of solutions of amino acids and related substances, VIII. The ionization of glycylglycine, ε-aminocaproic acid, and aspartic acid in aqueous solution from one to fifty degrees. J. Biol. Chem., 146:187–195, 1942.

- [85] P. K. Smith, A. T. Gorham, and E. R. B. Smith. Thermodynamic properties of solutions of amino acids and related substances. VII. The ionization of some hydroxyamino acids and proline in aqueous solution from one to fifty degrees. J. Biol. Chem., 144:737–745, 1942.
- [86] E. D. Snijder, M. J. M te Riele, G. F. Versteeg, and W. P. M. van Swaaij. Diffusion coefficients of several aqueous alkanolamine solutions. J. Chem. Eng. Data, 38:475–480, 1993.
- [87] W. V. Steele, R. D. Chirico, S. E. Knipmeyer, A. Nguyen, and N. K. Smith. Thermodynamic properties and ideal-gas enthalpies of formation for dicyclohexyl sulfide, diethylenetriamine, di-n-octyl sulfide, dimethyl carbonate, piperazine, hexachloroprop-1-ene, tetrakis(dimethylamino)ethylene, n,n -bis-(2-hydroxyethyl)ethylenediamine, and 1,2,4-triazolo[1,5a]pyrimidine. J. Chem. Eng. Data, 42:1037–1052, 1997.
- [88] W-C. Sun, C-B. Yong, and M-H. Li. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. *Chem. Eng. Sci.*, 60:503–516, 2005.
- [89] G. Taylor. Dispersion of soluble matter in solvent flowing slowly through a tube. *Proc. Roy. Soc. Lond. A*, 219:186–203, 1953.
- [90] G. Taylor. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. Roy. Soc. Lond. A, 225:473–477, 1954.
- [91] W. J. Thomas and M. J. Adams. Measurement of diffusion coefficients of carbon dioxide and nitrous oxide in water and aqueous solutions of glycerol. *Trans. Faraday Soc.*, 61:668–673, 1965.
- [92] I. M. J. J. van de Ven-Lucassen, F. G. Kieviet, and J. A. M. Kerkhof. Fast and convenient implementation of the taylor dispersion method. J. Chem. Eng. Data, 40:407–411, 1995.
- [93] J. van Holst, P. P. Politiek, J. P. M. Niederer, and G. F. Versteeg. CO₂ capture from flue gas using amino acid salt solutions. In 8th International Conference on Greenhouse Gas Control Technologies (GHGT-8), Trondheim, Norway, 2006.
- [94] G. F. Versteeg and W. P. M. Van Swaaij. On the kinetics between CO₂ and alkanolamines both in aqueous and non-aqueous solutions - I. Primary and secondary amines. *Chem Eng. Sci.*, 43:573–585, 1988.
- [95] G. F. Versteeg and W. P. M. Van Swaaij. On the kinetics between CO₂ and alkanolamines both in aqueous and non-aqueous solutions - II. Tertiary amines. *Chem. Eng. Sci.*, 43:587–591, 1988.
- [96] G. F. Versteeg and W. P. M. van Swaaij. Solubility and Diffusivity of Acid Gases (CO₂, N₂O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data, 33:29–34, 1988.
- [97] C. R. Wilke and P. Chang. Correlation of diffusion coefficients in dilute solutions. AIChE J., 1:264–270, 1955.

- [98] H. Wilson and R. K. Cannan. The glutamic acid-pyrrolidonecarboxylic acid system. J. Biol. Chem., 119:309–331, 1937.
- [99] G.-W. Xu, C.-F. Zhang, A.-J. Qin, and Y.-W. Wang. Kinetics Study on Absorption of Carbon Dioxide into Solutions of Activated Methyldiethanolamine. *Ind. Eng. Chem. Res.*, 31:921–927, 1992.
- [100] X. Zhang, C.-F. Zhang, S.-J. Qin, and Z.-S. Zheng. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. *Ind. Eng. Chem. Res.*, 40:3785– 3791, 2001.