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ABSTRACT 

Mixing rules are widely used to express effective properties of coefficients appearing in 
heterogeneous diffusion like processes. Since most of the mixing rules were derived to 
compute the effective dielectric constant, εeff, in this work, we confine our interest to the 
electrostatic behaviour of mixtures. This paper focuses on the validation of mixing rules by 
comparing them with the effective properties computed from the numerical solution of 
div(εgradΦ) =0 including boundary conditions. One of the issues concerns the very large 
number of grid blocks required to obtain convergence. We choose the checkerboard 
configuration as the input for the heterogeneous ε field as a realistic example that is amenable 
to analysis. We compare the convergence rates of a Finite Element Model (FEM) and a Finite 
Difference Model (FDM). Different choices of internodal dielectric coefficients are used in 
the FDM. For the 2-dimensional case it can be shown that the result for both the FEM and 
FDM converge to the geometric average. The FEM uses a 9 (27) points scheme, whereas the 
FDM uses a 5 (7) points in 2- (3)-dimensional computations. It is found that the convergence 
rate for the FE model is faster for both the 2- and 3-dimensional models. Indeed, using a 
geometric average for the internodal dielectric constant leads to the fastest convergence rate 
when the different FD models are compared. From the 3-dimensional computations it is 
possible to estimate εeff for different ratios of ε for a two component system. From comparison 
with existing mixing formulas we conclude that the cubic power-law or the Looyenga-
Landau-Lifshitz and the Bruggeman mixing rule give the best estimate. For the given volume 
ratio of constituents, the Hashin-Shtrikman bounds show the range of values that can be 
obtained for different spatial distributions. We conclude that for a given volume ratio fine 
gridded numerical computations can be used to analyze the measured effective dielectric 
constant.  

1. INTRODUCTION 

In heterogeneous diffusion like processes, mixing rules are used to obtain averaged values 
of the coefficients, e.g., the diffusion coefficient D, the thermal conductivity λ, the Darcy 
permeability k, the magnetic susceptibility µ, the electric conductivity σ and the dielectric 
constant ε. In the literature references cited in this paper we mainly concentrate on effective 
dielectric constant for electrostatics and the equivalent Darcy permeability for flow through 
porous media. Without loss of generality we express all results in terms of the dielectric 
constant The average dielectric constant for up-scaled heterogeneous media is denoted by the 
effective dielectric constant εeff.  
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The classical mixing rules are the Maxwell-Garnett mixing rule (MGM) [Maxwell-
Garnett, 1904] and the Bruggeman formula (BRM) [Bruggeman, 1935]. Summaries and 
applications of various mixing rules are given by [Renard and de Marsily, 1997; Sihvola, 
2000; Kärkkäinen et al., 2000; Seleznev, 2005]. The mixing rules seek the single optimal 
effective value for εeff, which replaces the heterogeneous ε field. An important class of mixing 
rules is derived from the effective medium approximation. The concept of the effective 
medium theory implies that the mixture responds to electromagnetic excitation as if it were 
homogeneous [Sihvola, 2000]. All of these theories use the effective field due to an average 
dielectric constant and subsequently average local contributions with a specific volume 
fraction. At low concentrations of the guest component (inclusions), all mixing rules show 
more or less the same results due to linear approximations in the component fraction. Hence 
at higher concentrations of the guest component in the host component (background), the 
results can strongly vary [Kärkkäinen et al., 2001]. Moreover, in order to validate the 
computed εeff, the Wiener bounds [Wiener, 1912] and the Hashin–Shtrikman bounds [Hashin 
and Shtrikman, 1962] are often used. The Hashin–Shtrikman bounds are equivalent to the 
Maxwell-Garnett estimate of the relative dielectric constant for a two component mixture. 
Both types of bounds are based on spherical inclusions embedded in the background medium 
[Choy, 1999]. These sets of bounds are represented by a lower and an upper bound and are 
applicable for the averaged dielectric coefficient in a macroscopically isotropic (Hashin-
Shtrikman bounds) or anisotropic (Wiener bounds) homogeneous medium. The bounds are 
independent of the spatial distribution of the constituents. 

The effective value of a mixture depends on the method of measurement and the scale at 
which the heterogeneities occur. For a large class of measurements the processes in the 
isotropic case are described by the stationary diffusion equation with a given set of boundary 
conditions. Validation of the mixing rules partly consists of comparing the results with 
experimental data [Noetinger and Jacquin, 1991]. It is, however, also possible to validate the 
mixing rules by comparison with numerical computations using the stationary diffusion 
equation [Pekonen et al., 1999; Kärkkäinen et al., 2000, 2001; Renard et al., 2000a, 2000b]. 
In these investigations, an analysis of the two- and three-dimensional dielectric mixture has 
been done using the Finite Difference Method (FDM). Renard et al. [2000b] investigated the 
difference in convergence rate of the numerical solution obtained from FDM and the Finite 
Element Method (FEM). They concluded that for coarse gridded models the FEM 
overestimated εeff and FDM underestimated it when the harmonic average is applied on the 
grid cell boundaries. 

The two component checkerboard configuration as the input for the locally heterogeneous 
ε field has been investigated extensively. Analytical functions for the two–dimensional 
checkerboard configuration with periodic boundary conditions have been discussed by Keller 
[1964], Dykhne [1971] and Ke-da [1990]. It is generally concluded that the analytic εeff for 
this configuration equals the geometric average. Moreover, this field is sufficiently realistic to 
be representative of practical heterogeneity distributions, amenable to analysis (periodicity, 
simplicity, uniformity of internodal permittivities) and the role of the host, εhost, and guest 
component, εguest, is indistinguishable. 

FDM is a widely accepted numerical method to compute the effective dielectric constant 
and to investigate the role of the component distribution. To evaluate the effective dielectric 
constant obtained from FDM computations, numerical properties must be investigated. The 
convergence of the numerical solution toward the theoretical solution can only be obtained for 
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a large number of grid blocks [Romeu and Noetinger, 1995; Renard et al., 2000b]. Moreover, 
in FDM computations an effective dielectric constant, denoted by εij, must be ascribed to the 
grid cell boundaries. The way εij is defined, influences the validity and thus the convergence 
of the solution [Romeu and Noetinger, 1995; Renard et al., 2000b; Roth et al., 1996].   

In this paper, we investigate the role of two numerical methods, FEM and FDM, for the 
computation of the effective dielectric constant. The convergence for four different finite 
difference approximations and the finite element model is evaluated. For each FD model we 
apply the arithmetic average, the harmonic average, the geometric average or the third-order 
power law (or cubic law) as input for εij [e.g., Noetinger and Jacquin, 1991; Wen and Gómez-
Hernández, 1996]. The results obtained for the 3-dimensional checkerboard configuration for 
different ratios between εhost and εguest are compared to existing mixing rules.  

The objective of this study is to give the methodology for validation of mixing formulas 
by comparing them to accurate numerical computations. The long term objective is to use 
accurate numerical computations to obtain a mixing rule that includes a parameter that 
describes the spatial distribution of the constituents, i.e., a parameter that specifies the 
effective dielectric constant from combined dielectric and capillary pressure measurements.   

2. NUMERICAL METHODS 

To obtain εeff of a two component mixture two types of numerical models have been 
developed based on the finite difference method and finite element method. The sample is 
composed by the background material, εhost, and the inclusions, εguest. Both the models solve 
the equation for a static electromagnetic problem in a square or cubic domain. For the model 
description we restrict to the 2-dimensional case where the diffusion equation reads  

( ), ,( , ) 0 on : {0 ,0  }x y x yx y x L y Lε∇ ⋅ ∇ Φ = Ω ≤ < ≤ < , (1)
where ε is the dielectric constant and Φ is the electric potential. In the y-direction the potential 
has an ordinary periodic boundary condition [e.g., Kärkkäinen et al., 2001]. A constant 
potential difference, ∆Φ , is applied in the x-direction. These periodic boundary conditions 
are given as 

( , ) ( 0, )x L y x yΦ = = Φ = −∆Φ  and ( , 0) ( , )x y x y LΦ = = Φ = . (2) 
After solving for the potential field, the effective dielectric constant can be computed with 

A
LQ

eff ∆Φ
=ε , (3) 

where A is the total surface perpendicular to the flow and Q= ∫
Φ

A

dS
dn
dε , is the total charge. 

For the specific equations in the FD method we refer to Patankar et al. [1980]. The model 
area is subdivided in square grid blocks and the internodal dielectric constant, εij, used in the 
FDM description is represented by  

1

2
i j

ij

α α αε ε
ε

⎛ ⎞+
= ⎜ ⎟⎜ ⎟
⎝ ⎠

. (4) 

Hence, the arithmetic average, the harmonic average and the third-order power law 
average corresponds respectively to α=1, α=-1, α=1/3. The fourth internodal average applied, 
is the geometric average described by ij i jε ε ε= . 
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The FEM is also based on an equidistant grid and bilinear test functions are applied in the 
two-dimensional configuration and trilinear test functions in three-dimensional configuration 
[Zienkiewicz et al., 2005]. The test function used for two dimensions is represented by  

( , ) 1v x y ax by cxyβ = + + + , (5) 
in the domain spanned by the grid points β=P, N, NE, N with coordinates (0,0), (0,∆y), 
(∆x,∆y) and (∆x,0) respectively. At the points N, NE, E the function vβ=vP=0. Hence we 
obtain  

( , ) 1 1P P
P

x x y y
v x y

x y
⎛ − ⎞⎛ − ⎞

= − −⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠⎝ ⎠
. (6) 

3. NUMERICAL RESULTS 

Simulations with the FEM and FDM, with different estimations for the internodal 
dielectric coefficients, are performed for the checkerboard configuration. In other words the 
volume fraction for each of the components is 0.5 in all simulations. Grid refinement is 
applied in combination with the multi-grid method to find εeff. The results for a two 
component mixture with εhost=3 and εguest=10 for the 2-dimensional and 3-dimensional 
configuration are presented in FIGURE 1 and FIGURE 2 respectively. 

 
FIGURE 1. Comparison between FDM and FEM for a 2 dimensional checkerboard configuration with 

εhost=3 and εguest=10 

For the 2-dimensional case, for all εij, both the FEM solutions  and FDM solutions , 
converge to the geometric average. In the case where the geometric average is applied as 
estimator for εij, the computed εeff is approximated well for the coarse grid (see FIGURE 1). 
Moreover, the under- and overestimation for the harmonic and arithmetic average applications 
satisfy the Wiener bounds. For these bounds a layered system is assumed, hence the upper 
and lower bound are represented by the harmonic and arithmetic average respectively. The 
solutions obtained for all refinements satisfy the lower and upper Hashin-Shtrikman bounds, 
respectively given by 4.68 and 7.36.  
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FIGURE 2. FDM and FEM computations for a 3–dimensional checkerboard with εhost=3 and εguest=10 

From FIGURE 2 it can be seen that the solutions obtained for the power law FDM 
approximation for the 3-dimensional checkerboard satisfy the Hashin-Shtrikman bounds, even 
for very coarse grids. The harmonic and the arithmetic FD models have the smallest 
convergence rate and are valid for ∆x/L < 0.087. Not much difference in convergence rate can 
be observed between FEM and the FDM based on both the geometric average and power law 
average. The overestimation εeff for the FE model and the underestimation of the FD model, 
except from the “arithmetic” based FDM, is in agreement with the results of Renard et al. 
[2000b]. The result obtained from the power law based FDM for a very coarse grid already 
gives a reasonable and valid estimate for εeff. 

 
To investigate which mixing rule (MR), provides the best estimate for εeff, we compute the 

εeff of the 3-dimensional checkerboard for different ε-ratios on a very fine grid, consisting of 
681472 grid blocks. We normalize εeff with the mixing rule considered and plot the results as a 
function of the contrast on a logarithmic scale (see FIGURE 3). The BRM and the Looyenga-
Landau-Lifshitz mixing rule (LLMF) both give the best estimates for εeff

 with increasing 
deviations for increasing contrasts. For the region of εhost/εguest between 0.7 and 2, the BRM 
(FIGURE 3a) and LLMF (equation (2) with α=1/3, FIGURE 3b) give a very good 
approximation of εeff. In spite of the fine gridded solutions for the FEM and FDM, the 
deviation in εeff between the different numerical models still exists for bigger contrasts. 
Especially for the geometric, arithmetic and harmonic FDM approximations a finer grid is 
required. The FD model based on the power law average and the finite element model show 
both the best convergence and overlap each other (see also FIGURE 2), which might indicate 
that these solutions have converged. The worst approximation is provided by the power law 
mixing formula (PF) (FIGURE 3f), with α=0.65. This suggests that α<0.5 should be used and 
that α =1/3 is almost optimal.  
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FIGURE 3. Normalization of εeff for different contrasts with various mixing rules:  a) Bruggeman Mixing 
formula, BMF  b) Looyenga-Landau-Lifshitz Mixing formula (LLMF, Seleznev, 2005)  c) Complex 
Refractive Index Mixing formula, CRIM [Seleznev, 2005]  d) Lichtenecker Mixing formula, LMF 

[Seleznev, 2005]  e) Effective Medium Approximation, EMA [Sahimi, 1994] for a percolation threshold, 
pc=0.2495 [Stauffer and Zabolitzky, 1986]  f) Power law formula, PF with α=0.65 [Ghose and Slob, 2006]. 

The Hashin-Shrtrikman bounds equal the Maxwell-Garnett Mixing formula, GMF, for a two component 
mixture. 

We investigate the applicability of the geometric average used for εeff, as obtained for the 
2-dimensional checkerboard. All computations are done with the FE model. We computed εeff 
for 100 uniformly distributed random field realizations. All these realizations consists of a 
two component mixture with εhost=3 and εguest=10 and an expected volume fraction of 0.5, 
with a 2-dimensional percolation threshold pc= 0.5. To test the isotropy of the fields, we 

a b 

c d 

e f 
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compute εeff both in x- and y-direction. The mean value for εeff for both directions is µx=5.4804 
and µy=5.5824 and the corresponding standard deviations are σx= 0.0512 and σy=0.0541. In 
FIGURE 4 the convergence rate is presented for the average value of µx and µy. It is clear that 
the both solutions converge towards the geometric average. Comparison of the results from 
the checkerboard field (FIGURE 1) and the results from the uniformly distributed random 
field (FIGURE 4) shows that the convergence rate for the random field is slower than for the 
checkerboard configuration and both configurations converge towards the geometric average. 
This is also described by the effective medium approximation, from which we obtain indeed 
the geometric average, using pc=0.5 for bond percolation in 2 dimensions. 

 
FIGURE 4. Estimated means in x- and y-direction, µx and µy, obtained for 100 uniformly distributed 

random field realizations 

4. DISCUSSION AND CONCLUSIONS 

Based on the numerical computations we conclude that for fine gridded models the 
different proposed FD models and the FE model converge to the analytical εeff. However, in 
the 3-dimensional case the applicability of the FE model and the harmonic and arithmetic FD 
approximations are not valid for a coarse grid because the solution does not satisfy the 
Hashin-Shtrikman bounds. Application of the finite difference method for effective parameter 
computation is restricted by the choice of internodal averaging. For the 2-dimensional case 
the geometric average FDM approximation has the best convergence rate and it provides a 
good estimate for εeff for coarse gridded models. Based on the same criteria, the power law 
FDM approximation (with α=1/3) is the most powerful model for 3-dimensional 
computations.  

Moreover, for increasing contrasts between εhost and εguest the convergence rate decreases 
for both FDM and FEM, hence more grid refinement is required. The same can be concluded 
from the computations obtained for uniformly distributed random fields in comparison to the 
checkerboard configuration. However, the numerical solution for both the 2-dimensional 
random fields and the 2-dimensional checkerboard field indeed converge to the geometric 
average according to the effective medium approximation. As opposed to this, the 3-
dimensional solution for the checkerboard field is not approximated well by the effective 
medium theory, when the percolation threshold is set to 0.2495 (see FIGURE 3e). We 
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conclude that the cubic power-law or the Looyenga-Landau-Lifshitz mixing rule and the 
Bruggeman formula give the best estimate for the 3-dimensional case. 
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