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ABSTRACT

Mixing rules are widely used to express effective properties of coefficients appearing in
heterogeneous diffusion like processes. Since most of the mixing rules were derived to
compute the effective dielectric constant, €. in this work, we confine our interest to the
electrostatic behaviour of mixtures. This paper focuses on the validation of mixing rules by
comparing them with the effective properties computed from the numerical solution of
div(egrad®) =0 including boundary conditions. One of the issues concerns the very large
number of grid blocks required to obtain convergence. We choose the checkerboard
configuration as the input for the heterogeneous ¢ field as a realistic example that is amenable
to analysis. We compare the convergence rates of a Finite Element Model (FEM) and a Finite
Difference Model (FDM). Different choices of internodal dielectric coefficients are used in
the FDM. For the 2-dimensional case it can be shown that the result for both the FEM and
FDM converge to the geometric average. The FEM uses a 9 (27) points scheme, whereas the
FDM uses a 5 (7) points in 2- (3)-dimensional computations. It is found that the convergence
rate for the FE model is faster for both the 2- and 3-dimensional models. Indeed, using a
geometric average for the internodal dielectric constant leads to the fastest convergence rate
when the different FD models are compared. From the 3-dimensional computations it is
possible to estimate €, for different ratios of ¢ for a two component system. From comparison
with existing mixing formulas we conclude that the cubic power-law or the Looyenga-
Landau-Lifshitz and the Bruggeman mixing rule give the best estimate. For the given volume
ratio of constituents, the Hashin-Shtrikman bounds show the range of values that can be
obtained for different spatial distributions. We conclude that for a given volume ratio fine
gridded numerical computations can be used to analyze the measured effective dielectric
constant.

1. INTRODUCTION

In heterogeneous diffusion like processes, mixing rules are used to obtain averaged values
of the coefficients, e.g., the diffusion coefficient D, the thermal conductivity A, the Darcy
permeability k, the magnetic susceptibility u, the electric conductivity ¢ and the dielectric
constant ¢. In the literature references cited in this paper we mainly concentrate on effective
dielectric constant for electrostatics and the equivalent Darcy permeability for flow through
porous media. Without loss of generality we express all results in terms of the dielectric
constant The average dielectric constant for up-scaled heterogeneous media is denoted by the
effective dielectric constant €.
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The classical mixing rules are the Maxwell-Garnett mixing rule (MGM) [Maxwell-
Garnett, 1904] and the Bruggeman formula (BRM) [Bruggeman, 1935]. Summaries and
applications of various mixing rules are given by [Renard and de Marsily, 1997; Sihvola,
2000; Kdirkkdinen et al., 2000; Seleznev, 2005]. The mixing rules seek the single optimal
effective value for .4, which replaces the heterogeneous ¢ field. An important class of mixing
rules is derived from the effective medium approximation. The concept of the effective
medium theory implies that the mixture responds to electromagnetic excitation as if it were
homogeneous [Sihvola, 2000]. All of these theories use the effective field due to an average
dielectric constant and subsequently average local contributions with a specific volume
fraction. At low concentrations of the guest component (inclusions), all mixing rules show
more or less the same results due to linear approximations in the component fraction. Hence
at higher concentrations of the guest component in the host component (background), the
results can strongly vary [Kdrkkdinen et al., 2001]. Moreover, in order to validate the
computed &5, the Wiener bounds [Wiener, 1912] and the Hashin—Shtrikman bounds [Hashin
and Shtrikman, 1962] are often used. The Hashin—Shtrikman bounds are equivalent to the
Maxwell-Garnett estimate of the relative dielectric constant for a two component mixture.
Both types of bounds are based on spherical inclusions embedded in the background medium
[Choy, 1999]. These sets of bounds are represented by a lower and an upper bound and are
applicable for the averaged dielectric coefficient in a macroscopically isotropic (Hashin-
Shtrikman bounds) or anisotropic (Wiener bounds) homogeneous medium. The bounds are
independent of the spatial distribution of the constituents.

The effective value of a mixture depends on the method of measurement and the scale at
which the heterogeneities occur. For a large class of measurements the processes in the
isotropic case are described by the stationary diffusion equation with a given set of boundary
conditions. Validation of the mixing rules partly consists of comparing the results with
experimental data [Noetinger and Jacquin, 1991]. It is, however, also possible to validate the
mixing rules by comparison with numerical computations using the stationary diffusion
equation [Pekonen et al., 1999; Kdrkkdinen et al., 2000, 2001; Renard et al., 2000a, 2000b].
In these investigations, an analysis of the two- and three-dimensional dielectric mixture has
been done using the Finite Difference Method (FDM). Renard et al. [2000b] investigated the
difference in convergence rate of the numerical solution obtained from FDM and the Finite
Element Method (FEM). They concluded that for coarse gridded models the FEM
overestimated ¢, and FDM underestimated it when the harmonic average is applied on the
grid cell boundaries.

The two component checkerboard configuration as the input for the locally heterogeneous
¢ field has been investigated extensively. Analytical functions for the two—dimensional
checkerboard configuration with periodic boundary conditions have been discussed by Keller
[1964], Dykhne [1971] and Ke-da [1990]. It is generally concluded that the analytic & for
this configuration equals the geometric average. Moreover, this field is sufficiently realistic to
be representative of practical heterogeneity distributions, amenable to analysis (periodicity,
simplicity, uniformity of internodal permittivities) and the role of the host, €., and guest
component, gues, 15 indistinguishable.

FDM is a widely accepted numerical method to compute the effective dielectric constant
and to investigate the role of the component distribution. To evaluate the effective dielectric
constant obtained from FDM computations, numerical properties must be investigated. The
convergence of the numerical solution toward the theoretical solution can only be obtained for
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a large number of grid blocks [Romeu and Noetinger, 1995; Renard et al., 2000b]. Moreover,
in FDM computations an effective dielectric constant, denoted by ¢;;, must be ascribed to the
grid cell boundaries. The way ¢; 1s defined, influences the validity and thus the convergence
of the solution [Romeu and Noetinger, 1995; Renard et al., 2000b; Roth et al., 1996].

In this paper, we investigate the role of two numerical methods, FEM and FDM, for the
computation of the effective dielectric constant. The convergence for four different finite
difference approximations and the finite element model is evaluated. For each FD model we
apply the arithmetic average, the harmonic average, the geometric average or the third-order
power law (or cubic law) as input for ¢; [e.g., Noetinger and Jacquin, 1991; Wen and Gomez-
Herndndez, 1996]. The results obtained for the 3-dimensional checkerboard configuration for
different ratios between &0y and &g, are compared to existing mixing rules.

The objective of this study is to give the methodology for validation of mixing formulas
by comparing them to accurate numerical computations. The long term objective is to use
accurate numerical computations to obtain a mixing rule that includes a parameter that
describes the spatial distribution of the constituents, i.e., a parameter that specifies the
effective dielectric constant from combined dielectric and capillary pressure measurements.

2. NUMERICAL METHODS

To obtain &, of a two component mixture two types of numerical models have been
developed based on the finite difference method and finite element method. The sample is
composed by the background material, .4, and the inclusions, &g.s. Both the models solve
the equation for a static electromagnetic problem in a square or cubic domain. For the model
description we restrict to the 2-dimensional case where the diffusion equation reads

V., (e(xy)V, @)=00onQ {0<x<L0<y<L}, (1)

where ¢ is the dielectric constant and @ is the electric potential. In the y-direction the potential
has an ordinary periodic boundary condition [e.g., Kdrkkdinen et al., 2001]. A constant
potential difference, AD, is applied in the x-direction. These periodic boundary conditions
are given as

O(x=L,y)=P(x=0,y)—AD and ®(x,y=0)=D(x,y=1L). 2
After solving for the potential field, the effective dielectric constant can be computed with
O L
== 3
Eeff AD A (3)

where 4 is the total surface perpendicular to the flow and 0= I € dEdS , 1s the total charge.
n
A
For the specific equations in the FD method we refer to Patankar et al. [1980]. The model
area 1s subdivided in square grid blocks and the internodal dielectric constant, ¢;, used in the

FDM description is represented by

o o %Z
& :(gi i J - 4)

2

Hence, the arithmetic average, the harmonic average and the third-order power law
average corresponds respectively to a=1, a=-1, a=1/3. The fourth internodal average applied,

is the geometric average described by ¢, = |/, .



W.-J. PLUG, J. BRUINING, E.C. SLOB, A.G. GORRITI

The FEM is also based on an equidistant grid and bilinear test functions are applied in the
two-dimensional configuration and trilinear test functions in three-dimensional configuration
[Zienkiewicz et al., 2005]. The test function used for two dimensions is represented by

vy(x,y)=1+ax+by+cxy, (5)
in the domain spanned by the grid points f=P, N, NE, N with coordinates (0,0), (0,Ay),
(Ax,Ay) and (Ax,0) respectively. At the points N, NE, E the function vs=vp=0. Hence we

obtain
vp(x,y)=(1—|x;;f’|j[1—|y;;f”|j. (6)

3. NUMERICAL RESULTS

Simulations with the FEM and FDM, with different estimations for the internodal
dielectric coefficients, are performed for the checkerboard configuration. In other words the
volume fraction for each of the components is 0.5 in all simulations. Grid refinement is
applied in combination with the multi-grid method to find &, The results for a two
component mixture with &,,,=3 and &ges=10 for the 2-dimensional and 3-dimensional
configuration are presented in FIGURE 1 and FIGURE 2 respectively.
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FIGURE 1. Comparison between FDM and FEM for a 2 dimensional checkerboard configuration with
Enos=3 AN E4ye=10

For the 2-dimensional case, for all ¢, both the FEM solutions and FDM solutions ,
converge to the geometric average. In the case where the geometric average is applied as
estimator for ¢;, the computed ¢4 is approximated well for the coarse grid (see FIGURE 1).
Moreover, the under- and overestimation for the harmonic and arithmetic average applications
satisfy the Wiener bounds. For these bounds a layered system is assumed, hence the upper
and lower bound are represented by the harmonic and arithmetic average respectively. The
solutions obtained for all refinements satisfy the lower and upper Hashin-Shtrikman bounds,
respectively given by 4.68 and 7.36.
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Hashin-Shtrikman upper bound

Hashin-Shtrikman lower bound
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FIGURE 2. FDM and FEM computations for a 3-dimensional checkerboard with &;,,=3 and &ge,=10

From FIGURE 2 it can be seen that the solutions obtained for the power law FDM
approximation for the 3-dimensional checkerboard satisfy the Hashin-Shtrikman bounds, even
for very coarse grids. The harmonic and the arithmetic FD models have the smallest
convergence rate and are valid for Ax/L < 0.087. Not much difference in convergence rate can
be observed between FEM and the FDM based on both the geometric average and power law
average. The overestimation & for the FE model and the underestimation of the FD model,
except from the “arithmetic” based FDM, is in agreement with the results of Renard et al.
[2000b]. The result obtained from the power law based FDM for a very coarse grid already
gives a reasonable and valid estimate for &

To investigate which mixing rule (MR), provides the best estimate for &5, we compute the
ge of the 3-dimensional checkerboard for different e-ratios on a very fine grid, consisting of
681472 grid blocks. We normalize & with the mixing rule considered and plot the results as a
function of the contrast on a logarithmic scale (see FIGURE 3). The BRM and the Looyenga-
Landau-Lifshitz mixing rule (LLMF) both give the best estimates for e, with increasing
deviations for increasing contrasts. For the region of €jos/€guest between 0.7 and 2, the BRM
(FIGURE 3a) and LLMF (equation (2) with a=1/3, FIGURE 3b) give a very good
approximation of e, In spite of the fine gridded solutions for the FEM and FDM, the
deviation in &, between the different numerical models still exists for bigger contrasts.
Especially for the geometric, arithmetic and harmonic FDM approximations a finer grid is
required. The FD model based on the power law average and the finite element model show
both the best convergence and overlap each other (see also FIGURE 2), which might indicate
that these solutions have converged. The worst approximation is provided by the power law
mixing formula (PF) (FIGURE 3f), with a=0.65. This suggests that «a<0.5 should be used and
that o =1/3 is almost optimal.
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FIGURE 3. Normalization of &, for different contrasts with various mixing rules: &) Bruggeman Mixing

formula, BMF b) Looyenga-Landau-Lifshitz Mixing formula (LLMF, Seleznev, 2005) ¢) Complex
Refractive Index Mixing formula, CRIM [Seleznev, 2005] d) Lichtenecker Mixing formula, LMF

[Seleznev, 2005] e) Effective Medium Approximation, EMA [Sahimi, 1994] for a percolation threshold,
p=0.2495 [Stauffer and Zabolitzky, 1986] f) Power law formula, PF with a=0.65 [Ghose and Slob, 2006].
The Hashin-Shrtrikman bounds equal the Maxwell-Garnett Mixing formula, GMF, for a two component

mixture.

We investigate the applicability of the geometric average used for .4, as obtained for the
2-dimensional checkerboard. All computations are done with the FE model. We computed ¢,
for 100 uniformly distributed random field realizations. All these realizations consists of a
two component mixture with &4,,=3 and €4,.,~10 and an expected volume fraction of 0.5,
with a 2-dimensional percolation threshold p.= 0.5. To test the isotropy of the fields, we
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compute &, both in x- and y-direction. The mean value for &, for both directions 1s u,=5.4804
and u,=5.5824 and the corresponding standard deviations are o,= 0.0512 and 0,=0.0541. In
FIGURE 4 the convergence rate is presented for the average value of u, and y,. It is clear that
the both solutions converge towards the geometric average. Comparison of the results from
the checkerboard field (FIGURE 1) and the results from the uniformly distributed random
field (FIGURE 4) shows that the convergence rate for the random field is slower than for the
checkerboard configuration and both configurations converge towards the geometric average.
This is also described by the effective medium approximation, from which we obtain indeed
the geometric average, using p.=0.5 for bond percolation in 2 dimensions.
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FIGURE 4. Estimated means in x- and y-direction, u, and u,, obtained for 100 uniformly distributed
random field realizations

4. DISCUSSION AND CONCLUSIONS

Based on the numerical computations we conclude that for fine gridded models the
different proposed FD models and the FE model converge to the analytical €., However, in
the 3-dimensional case the applicability of the FE model and the harmonic and arithmetic FD
approximations are not valid for a coarse grid because the solution does not satisfy the
Hashin-Shtrikman bounds. Application of the finite difference method for effective parameter
computation is restricted by the choice of internodal averaging. For the 2-dimensional case
the geometric average FDM approximation has the best convergence rate and it provides a
good estimate for &5 for coarse gridded models. Based on the same criteria, the power law
FDM approximation (with o=1/3) is the most powerful model for 3-dimensional
computations.

Moreover, for increasing contrasts between e, and &g, the convergence rate decreases
for both FDM and FEM, hence more grid refinement is required. The same can be concluded
from the computations obtained for uniformly distributed random fields in comparison to the
checkerboard configuration. However, the numerical solution for both the 2-dimensional
random fields and the 2-dimensional checkerboard field indeed converge to the geometric
average according to the effective medium approximation. As opposed to this, the 3-
dimensional solution for the checkerboard field is not approximated well by the effective
medium theory, when the percolation threshold is set to 0.2495 (see FIGURE 3e). We
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conclude that the cubic power-law or the Looyenga-Landau-Lifshitz mixing rule and the
Bruggeman formula give the best estimate for the 3-dimensional case.
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