

Sorption Mechanism for CO₂ on Hydrotalcites

For Sorption Enhanced Water Gas Shift processes

Soledad van Eijk

Veldhoven 11th February 2014

www.ecn.nl

What is SEWGS?

- Pre-combustion CO₂ capture
 - Pre-reformed gas mixture = syngas
- Sorption Enhanced Water Gas Shift
 - Water Gas Shift: $CO + H_2O \leftrightarrow CO_2 + H_2$
 - Sorption Enhanced: Le Chatelier's Principle
- High pressure (35 bar)
- High temperature (400°C)
 - Lower energy penalty, H_2 ready for combustion ^[1]
- Specifications SEWGS: >95% CO₂ capture, >98% CO₂ purity

[1] M.Gazzani et.al., international journal of greenhouse gas control (12 A.D.).

The reactor proces

High temperature (400°C), high pressure (35 bar) production of H₂ from Syngas.

The CO₂ adsorbent

- At ECN a sorbent is developed: Alkasorb +
- This is based on Hydrotalcite ^[2]
 - Two dimensional sheets of mixed hydroxides (M²⁺ & M³⁺)
 - With interlayer H₂O & charge compensating anions
 - $Mg_6Al_2(OH)_{16}CO_3 \cdot 4H_2O$
- At this temperature HTC converts into its active form ^[3]
 - @100°C layered HTC \rightarrow @400°C amorphous mixed oxide \rightarrow @900°C spinel

[2] D.P.Debecker et.al., Chemistry-A European Journal 15 (2009) 3920-3935; [3] Kim N. et.al., J. Chem. Phys. 2005; 122:214713

How does CO₂ adsorb?

• What is the mechanism behind the CO₂ adsorption

• What is the influence of the material composition

- The Mg/AI ratio and distribution have effect on possible bonding geometries (= sites)
- Impregnation with K_2CO_3 improves capacity by factor 4

• What is the influence of the process conditions

- Steam is always present and is also adsorbed, however seems to enhance capacity as well
- **Syngas** is the starting condition and Alkasorb showed to have catalytic properties

[4] M.Leon et.al., Industrial & Engineering Chemistry Research 49 (2010) 3663-3671.

The world of TPD and CO₂ isotopes

Measurements on MG30

- *Mg/Al ratio of 0.91*
- No impregnation with K₂CO₃

TPD: with green HTC

- Decomposition of HTC with several heating rates (β)
 - Resulted in **two sites for CO₂** (*H*₂*O results in 3 sites*)
 - With Kissinger method^[5] $\mathbf{E}_{\mathbf{a}}$ was determined from the slope
 - \rightarrow This corresponds to the **decomposition** sites of HTC

→ Need info on adsorption site(s) of Mixed Oxide, other measurements setup

^[5] H.E.Kissinger, Anal.Chem. 29 (1957) 1702-1706

TPD: with Mixed Oxide

- Mixed oxide (derived from HTC) saturated with CO₂ at 50°C
 - TPD with several heating rates (β)
 - With Kissinger the E_a can be determined from the slope
 - A can be determent^[6] when all sites are occupied $(f(\theta)=1) \rightarrow$

 \rightarrow Determined E_a and A can be used in mathematical models

[6] M.Leon et.al., Chem.Eng.J. 175 (2011) 341-348.

SSITKA: Steady State Isotopic Transient Kinetic Analysis

Follow ads reaction in complete equilibrium \rightarrow All (possible) sites are occupied with CO₂

Follow exchange of ¹²CO₂ with ¹³CO₂

- Information on number of sites and
- Mathematical input (reaction mech./kinetics)

 $R \rightarrow B_{1,ads} \rightarrow P$

 $\begin{array}{c} \mathsf{R} \to \mathsf{B}_{1, \mathsf{ads}} \to \mathsf{P} \\ \xrightarrow{} \mathsf{B}_{2, \mathsf{ads}} \end{array} \xrightarrow{\nearrow}$

 $\mathsf{R} \to \mathsf{B}_{1,\mathrm{ads}} \to \mathsf{P}$

 $\mathrm{R} \rightarrow \mathrm{B}_{\mathrm{1,ads}} \rightarrow \mathrm{B}_{\mathrm{2,ads}} \rightarrow \mathrm{P}$

Interpretation of SSITKA

• Indication of number of site types

- Done by calculating ln(1-N_{signal})
 - A. Simple mechanism:
 - B. Mechansim with 2 surface species in serie
 - C. Mechanism with parallel route

Results of SSITKA

• Experiments varying P[CO₂]

- At least 3 sites
- As P[CO₂] increases more capacity is used
- Type of sites remains the same

 \mathcal{L}

- Type of different sites remains the same
- Effects of both kinetics and thermodynamics are visible with increasing T

Results of SSITKA

• Experiments varying P[CO₂]

- At least 3 sites
- As P[CO₂] increases more capacity is used
- Type of sites remains the same

 \square

- Type of different sites remains the same
- Effects of both kinetics and thermodynamics are visible with increasing T

The world of TPD and CO₂ isotopes

Modeling

- SSITKA: equilibrium
- TPD: non-equilibrium
- Methods are complementary

Model fitting of TPD

• E_a and A found with Kissinger's method

- Site 1: Ea = 66 kJ/mol; A = 7.5e7 min⁻¹
- Site 2: Ea = 108 kJ/mol; A = 1.6e9 min⁻¹

- T_m model corresponds with measurements
- Shape is not corresponding

- Gauss distribution of E_a
 - with correlating A

•
$$\frac{d[CO_2]}{dT} = A_{f(E_a)} \exp^{-E_a gauss/RT}$$

• Changes in E_a and correlating A needed

Model fitting of SSITKA

• E_a and A from TPD as starting values

- There is a "transition" region \rightarrow like the Gauss distribution in TPD
 - To obtain this result 4 sites were implemented in the model

Before... Conclusions and Future The effect of H₂O on measurements

- Addition of 10% H₂O
 - No longer a chromatographic effect
 - The "transition" region is no longer present

ECN

Before... Conclusions and Future The effect of Potassium promotion (K₂CO₃)

- Impregnation of HTC with K_2CO_3 enhances the capacity by a factor 4

- Addition of 20wt% K₂CO₃
 - A very long chromatographic effect
 - Increased capacity

Conclusions and Future

- Combination of TPD and SSITKA results in good method for describing the abortion mechanism for these complex structures
- Three main sites can be determined
 - Chromatographic, fast, slow
- As well a distribution of E_a (Gaussion) for these sites
 - Inhomogeneous surface structure
- Focus on type of distribution of E_a for model TPD and SSITKA
- TPD and SSITKA measurements on K promoted HTC
- TPD and SSITKA measurements with additional steam
 - \rightarrow first experiments look promising
- Other techniques (like in-situ IR/RAMAN) \rightarrow adsorption geometry.

Functions θ

n th Order	θ^n
Random nucleation,	$(1-\theta)$
unimolecular decay law	
Phase boundary controlled reaction	$(1-\theta)^{1/2}$
(contracting area)	
Phase boundary controlled reaction	$(1-\theta)^{2/3}$
(contracting volume)	
Two-dimensional growth of nuclei	$2(1-\theta)(-ln(1-\theta))^{1/2}$
Three-dimensional growth of nuclei	$3(1-\theta)(-ln(1-\theta))^{2/3}$
One-dimensional diffusion, sharp interface	1/20
Two-dimensional diffusion, sharp interface	$-1/\ln(1-\theta)$
Three-dimensional diffusion, sharp interface	$3/[2((1-\theta)^{-1/3}-1)]$
Three-dimensional diffusion	$\frac{\left[3(1-\theta)^{\frac{2}{3}}\right]}{\left[2\left(1-(1-\theta)^{\frac{1}{3}}\right)\right]}$

21