

Adsorption of CO₂ and H₂O on supported amine sorbents.

Rens Veneman¹, Wenying Zhao², Zhenshan Li², Ningsheng Cai², Wim Brilman¹

¹⁾ Sustainable Process Technology, Fac. Science and Technology, University of Twente, NL,
²⁾ Department of Thermal Engineering, Tsinghua University, CN
E-mail address: R.Veneman@utwente.nl

Objective

To develop an adsorption based PC capture process with lower capture costs than the MEA based reference process.

- A supported amine based process is envisioned to have:
- Lower thermal energy required
- Lower capital investment

Implications of co-adsorption of H₂O

The co-adsorption of water can have a large impact on the process energy demand. Hence the desorption of co-adsorbed water in the desorber column should be prevented.

. . .

Adsorption of H_2O and CO_2 on supported amine sorbents

Lewatit VP OC 1065 can adsorb much more H_2O than CO_2 . The highest observed H_2O capacity is close to the capacity for a filled pore space. CO_2 capacity is limited by the amount of active sites.

The H₂O capacity is found to be only a function of RH% which also suggest that condensation is the main adsorption mechanism. Furthermore, H₂O adsorption measurements were performed for PEI impregnated styrene-divinylbenzene. The H₂O capacity of the impregnated support material is clearly much high than that of the support only.

Hence, the presence of amine groups causes increased affinity towards the adsorption of H_2O . This will make it difficult to make a hydrophobic sorbent material with amine functionality.

Experimental

Fixed bed adsorption experiments were combined with TGA analysis. Single component adsorption experiments for both CO_2 and H_2O were performed as well as co-adsorption of CO_2 and H_2O to asses differences in adsorption capacity.

Adsorption of H_2O and CO_2 on supported amine sorbents (continued)

The heat of adsorption is much lower for H_2O than for CO_2 . For water the calculated adsorption heat is close to the evaporation heat of water.

 $\rm H_2O$ does not seem to compete with CO_2 but does interfere in the adsorption process of CO_2 and slightly enhances the CO_2 capacity. The H_2O is not affected by the simultaneous adsorption of CO_2.

Main findings

- The sorbents can adsorb much more H₂O than CO₂.
- Adsorption of water is supply limited. Hence, the sorbent will adsorb all incoming water given enough adsorption time.
- The best strategy to prevent the co-adsorption of large quantities of water is to lower the dewpoint of the incoming flue gas. Lowering the dewpoint of the flue gas to 303 K will reduce the energy penalty for water adsorption to 0.2 GJ/t.

www.co2-cato.org

This research has been carried out in the context of the CATO-2-program. CATO-2 is the Dutch national research program on CO_2 Capture and Storage. The program is financially supported by the Dutch government (Ministry of Economic Affairs) and the CATO-2 consortium parties.

