

TATA STEEL

HISARNA SMELTING REDUCTION A SOLUTION FOR SUSTAINABLE HOT METAL PRODUCTION

Jan van der Stel,

Koen Meijer, Christiaan Zeilstra, Johan van Boggelen, Tim Peeters and Rod Dry (*)

Tata Steel Research & Development, IJmuiden, The Netherlands (*) RIO TINTO Perth, Australia

Reducing the carbon footprint of the steel industry, 19-20 April Zaandam and Petten, The Netherlands

Content

- **1. HIsarna development**
- 2. Technology background
- **3. The HIsarna pilot plant** 3.1. Milestones of the test campaiens
- 4. Forward program
 4.1 Further experimental work in prot plant
 4.2 Industrial scale demonstration plant

9 **6 6**

5. Conclusions

6. Challenge

All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands

I SHE SHOULD

and an other states of the second states of the sec

1. HIsarna development

- In 2004 several European steelmakers proactively started the ULCOS project with the objective to achieve 50 % reduction of the CO₂ emissions of steelmaking
- HIsarna is one of the four process development that originate from the ULCOS project.
- Since 2007 Tata Steel, Rio Tinto and ULCOS have been active developing this coal-based smelting reduction process.
- To date over 80 mln Euro has been invested in this new technology.
- The HIsarna process offers a combination of environmental and economical benefits.

his pilot plant is part of ^{hat has received fundin}

1.1 Comparison BF route - HIsarna

1.2. HIsarna benefits

TATA STEEL

2. Technology background

The HIsarna process produces liquid hot metal directly from fine ore and (non-metallurgical) coal

HIsarna consists of two process steps integrated in a single furnace

- Pre-reduction and smelting in a cyclone
- Final reduction and coal gasification in a Smelting Reduction Vessel (SRV)

The smelter technology is based on HIsmelt.

The cyclone technology was developed in IJmuiden in the 1990s.

History of smelt cyclone technology

The cyclone was developed in IJmuiden as part of the European "Coal-based Ironmaking" project. The project was technically successful but stopped in 1999 because there was no business case for proceeding to the Demo stage.

Experimental results CCF trials 1994 – 1999

Experimental cyclone plant in IJmuiden

TATA STEEL

HIsmelt technology

- HIsmelt is owned by Rio Tinto
- Large scale demonstration plant was constructed and operated in Kwinana, Australia
- Smelter technology is combined with ore pre-reduction in a fluidized bed
- Smelter operates with hot blast (enriched with oxygen)

3.1 The HIsarna pilot plant

3.1 The HIsarna pilot plant

TATA STEEL Hot Metal / Slag pot

3.2. Milestones of the test campaigns

- 2011 Campaign A Feasibility of new process First tap May 2011
- 2012 Campaign B First long operating period Standard raw materials 80 % of productivity target reached
- 2013 Campaign C Use of steam coal (23 %VM) Use of low grade ore (< 30 % Fe) First metal delivered to steel plant Good plant availability Productivity target reached
- 2014 Campaign D 30% of iron produced made into steel Use of high volatile coal (39 %VM) Use of high Zn waste oxides Use of scrap and ore concurrently Target coal consumption reached

4. Forward program

4.1. Further experimental work in pilot plant

Endurance campaign in pilot plant (Campaign E):

- Testing equipment endurance and long term process stability
- More focus on operational aspects and equipment aspects
- 6 months, starting early 2017
- Costs: 25 mln Euro
- Funding: project partners and EU
- 7.4 mln Euro EU subsidy secured
 - Horizon 2020, SILC-II programme
- 1.5 mln Euro funding from Dutch government
 - Demonstratie Energie Innovatie (DEI)

TATA STEEL

4.1 Plant modifications

HIsarna Pilotplant

4.2. Demo plant study

- Study carried out by Tata Consulting Engineers
- A location on the IJmuiden site has been selected

5. Conclusions

- HIsarna is a new coal-based ironmaking process offering both economical and environmental benefits
 - Reduced OPEX and CAPEX (30%) compared to Greenfield blast furnace route
 - Use of plant waste oxides (contaminated with Zn such as BOF or BF dust) or mining reverts
 - 20% lower primary energy consumption and 20 % lower CO₂ emissions per ton (48% with scrap usage)
 - Favourable combination with CO₂ capture because of N₂ free topgas.
 80% lower CO₂ emission per ton of steel when CO₂ storage is applied
 - Reduction of other emissions associated with agglomeration and cokemaking, NOx, SOx, dust and CO

5. Conclusions

- HIsarna is a new coal-based ironmaking process offering both economical and environmental benefits
- Experimental results of the plant in IJmuiden have confirmed the:
 - High energy efficiency, the raw material flexibility and good start/stop abilities of the process
- The next pilot plant campaign is planned for 2017
- Conceptual engineering for the first industrial scale plant, 0.5 to 1.0 M t/y, has started

6. Challenges

- Support from EU needed to create level playing field for European steel industry. Specific challenges:
 - Stringent environmental legislation
 - High energy costs
 - High labour costs
- Substantial investments required to develop HIsarna into game changer technology to reduce CO₂ emissions
- Better EU funding mechanisms to better support large, demonstration breakthrough developments

Acknowledgement

The HIsarna project is made possibly with the support of:

- Ulcos partners:
 - ArcelorMittal, Tata Steel, ThyssenKrupp, Ilva, voestalpine, Dillingen/Saarstahl, SSAB
 - -LKAB
 - -Paul Wurth
- Rio Tinto/HIsmelt
- EU FP6
- RFCS
- Dutch Ministry of Economic Affairs

Thank you For your Attention

Any Questions?

All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands

ulco

HIsarna

RioTinto

esearch & Development