Developments in the SEWGS CO<sub>2</sub> capture technology. Jaap Vente

vente@ecn.nl; +31 88 515 4916

CATO Meets the Projects Utrecht, 15 November 2017



## Organizational structures

Traditional hierarchy

The Matrix





#### We are financed like a matrix!



### Sorption Enhanced Water Gas Shift

- Water gas shift reaction at 400°C is thermodynamically limited
- Combines the Water-Gas-Shift reaction with sorbent material to simultaneously produce H<sub>2</sub> at high temperature whilst also capturing CO<sub>2</sub>





#### SEWGS in action



### SWOT - SEWGS

#### Strength

- Highly efficient technology
- Very suitable for the steel industry
- Low-cost process and sorbents

#### **Opportunities**

- The Netherlands aims to store 20 MT/y CO<sub>2</sub>
- Increased industrial budgets for the reduction of their carbon footprint
- CCUS is essential for deep decarbonisation

#### Weakness

- Technology only proven in the lab
- Business cases not fully defined
- Technology needs to be more compact

#### Threats

- CCUS suffers from a negative public perception
- For political and geological reasons, CO<sub>2</sub> storage is not possible in all countries
- World wide climate leadership is weak



6



## Residual streams contain energy

- Unique feature of current steel making processes
- Presence of diluted energy containing streams

| Gas type | CO <sub>2</sub> | СО | N <sub>2</sub> | H <sub>2</sub> | CH <sub>4</sub> | LHV<br>(MJ/Nm <sup>3</sup> ) |
|----------|-----------------|----|----------------|----------------|-----------------|------------------------------|
| BOF gas  | 19              | 58 | 20             | 3              |                 | 8                            |
| BF gas   | 24              | 23 | 49             | 4              |                 | 3.5                          |
| CO gas   | 2               | 5  | 7              | 62             | 24              | 18                           |

See IEAGHG report on Iron&Steel, http://www.ieaghg.org/docs/General\_Docs/Reports/2013-04.pdf ecn.nl BOF gas – Basic Oxygen Furnace gas, BF gas – Blast Furnace gas CO gas – Cokes Oven gas



8

#### **External validation**

be profitable. On the longer term, the very promising SEWGS route will become available on a commercial scale. Currently this route is at a Technology Readiness Level (TRL) or around 6 or 7. The SEWGS route is shown to be profitable, with a payback period of 8 years for the production of methanol and 2 years for the production of hydrogen using this route. However, one downside of





#### Technology only proven in the lab

# PILOTING IN THE STEEL INDUSTRY



### Progress





#### STEPWISE: the movie





13

ecn.nl

https://www.youtube.com/watch?v=A-EpcBt9uN4



FERTILIZERS FROM RESIDUAL STEEL GASES

#### **CURE CO**<sub>2</sub> to **Ure**a

## Production of value added chemicals

- Residual gases in the steel industry contain N<sub>2</sub>
- After SEWGS,
  - the  $N_2$  goes with the  $H_2$ ,
  - need for removal before hydrocarbon synthesis
- Treated BOF gas has the right  $H_2/N_2$  ratio for ammonia synthesis



#### **CURE CO**<sub>2</sub> to **Ure**a

16

#### **Business Case**

- Comparable economics natural gas based and BOF-gas based urea
- Urea pays for capture technology: storage ready CO<sub>2</sub> for free



# Technology needs to be more compact **COST REDUCTION BY INCREASED PRODUCTIVITY**



18

#### More compact operation

Structured sorbents vs. conventional technologies









#### 3-Dimensional structure sorbents



- Overall objective:
  - Productivity [kg CO<sub>2</sub>/(m<sup>3</sup>hr)] increase by a factor 10 of sorbent based capture technologies
- Means:

•

- Additive manufacturing,
  3D-printing
- Materials:
  - Hydrotalcite
  - Amine Functionalised Silica



19



## Advantages of structured beds





20

ecn.nl



## Additive manufacturing of porous materials



### Acknowledgements

STEPWISE has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 640769

The ACT 3D-CAPS project # 271503 has received funding from RVO (NL), RCN (NO), UEFISCDI (RO), and is cofunded by the CO<sub>2</sub> Capture Project and the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712 The CURE project has received funding from RvO under grant agreement TES 1216120







