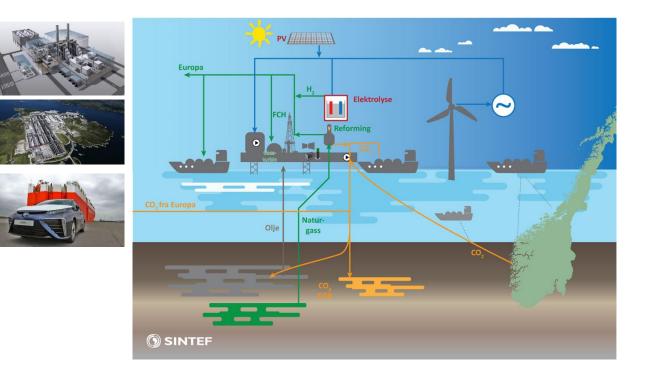
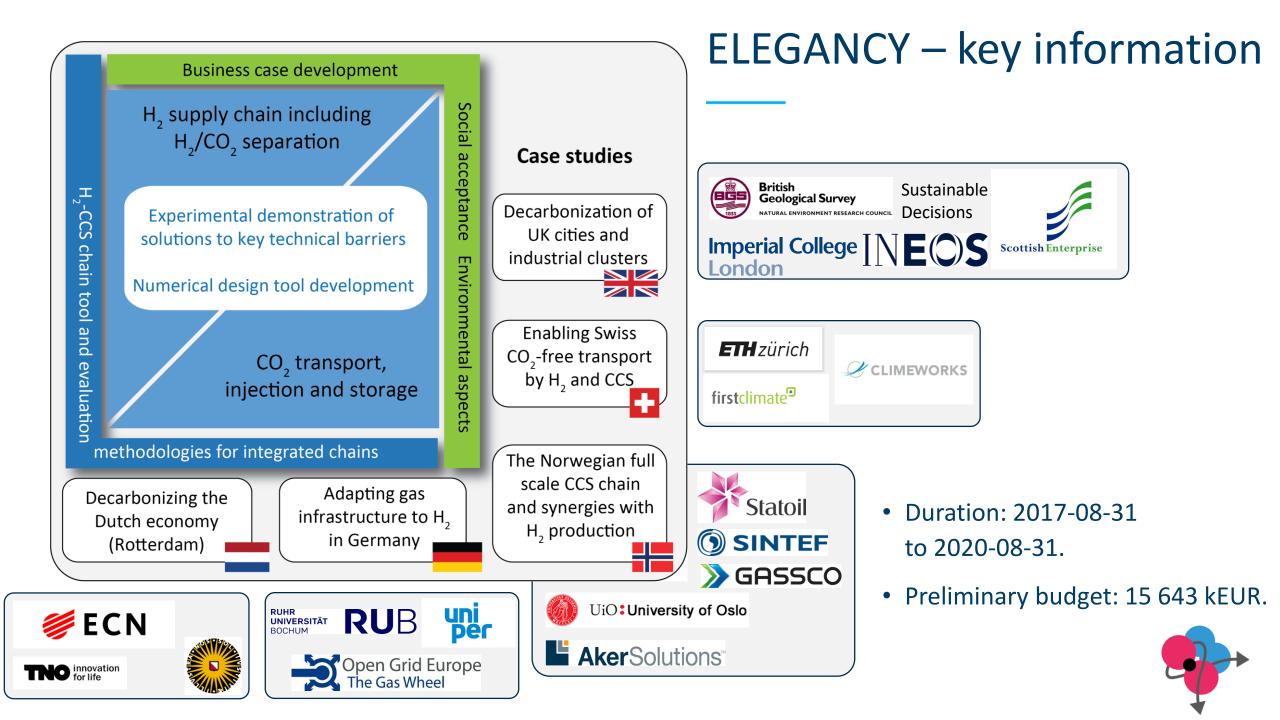


ELEGANCY Enabling a Low-Carbon Economy via Hydrogen and CCS

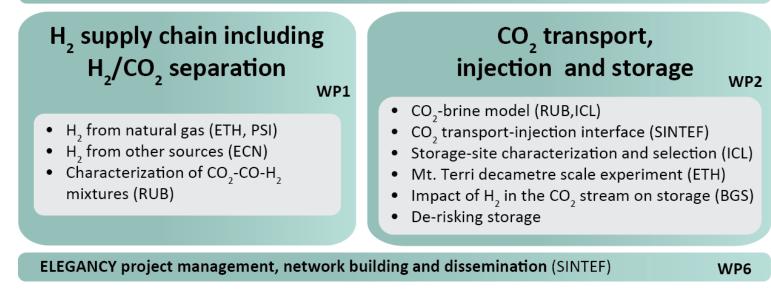


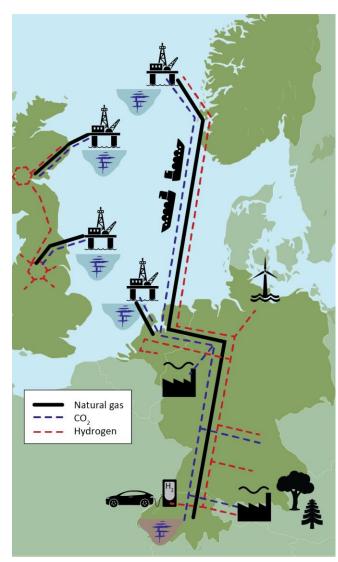

Robert de Kler

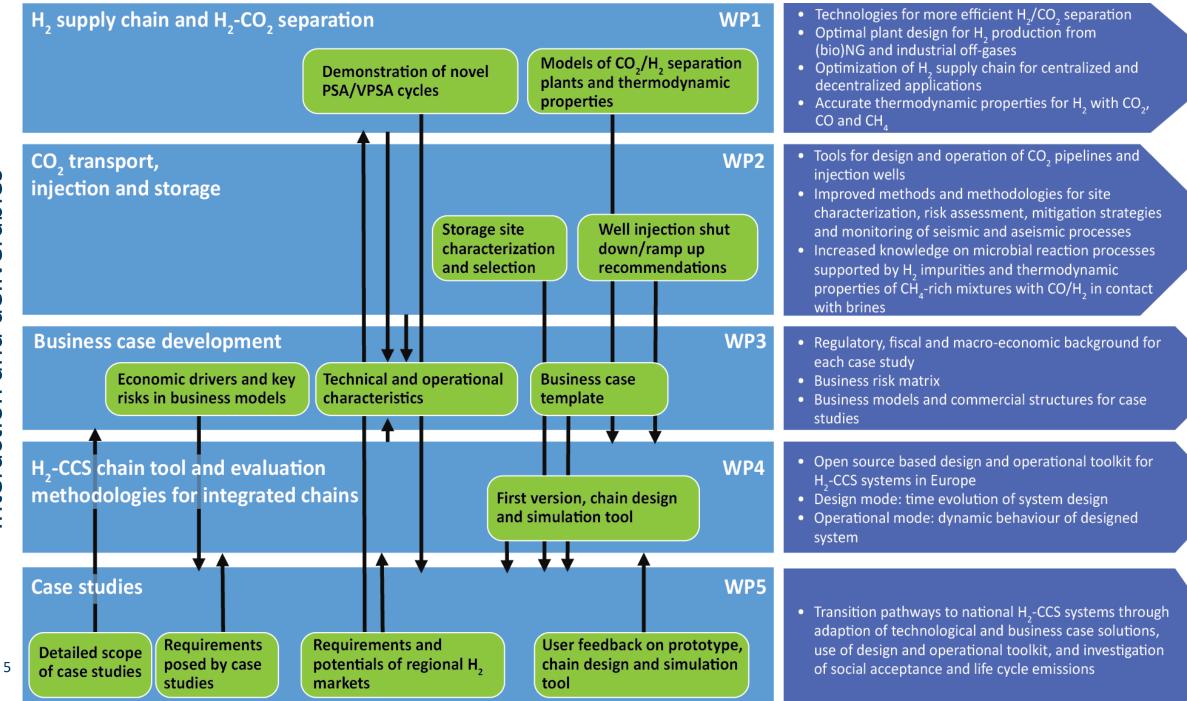
2017-11-10

ELEGANCY – Context

- The low carbon economy needs hydrogen for:
 - Industrial decarbonization
 - Heating and cooling
 - Transport (Marine, Rail, heavy trucks and cars)
- The low carbon economy needs CCS to:
 - Decarbonize industrial emissions
 - Provide a credible carbon negative solution
 - Provide the speed needed in the energy and climate transformation
- Combining hydrogen with CCS offers an exiting opportunity for synergies and value creation
 - Common use of infrastructure and the same offering to the end-user
 - Flexible hydrogen production offering balancing value to the grid
 - Value creation and sustainability from domestic assets on a long term scale
 - Could provide Europe with a unique position in industry, heating and cooling and transport by enabling massive amounts of hydrogen for various uses in society
- ELEGANCY aims at providing stepping stones essential in the realization of the energy system of the future
 - Efficient value chains for large scale hydrogen deployment- the merger of CCS and renewables in the society
 - Solving key technical barriers and providing experimentally validated tools for design of safe and efficient chain elements
- Enable a credible path for the hydrogen/CCS transition and role in the future low carbon society

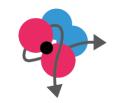

ELEGANCY – work packages & chains


Case studies incl. social acceptance, environmental aspects and CCS-H₂ market considerations: UK (large-scale decarbonization), Netherlands (Rotterdam decarbonization), Norway (full scale CCS chain and H₂ production), Switzerland (decarbonization of transport sector), Germany (adapting gas infrastructure and processes to H₂) WP5


H₂-CCS chain tool and evaluation methodologies for integrated chains: (ICL, SINTEF, PSI, RUB, TNO) WP4

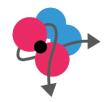
Business case development: (AdeB,FirstClimate,SDL)

WP3



World-class research infrastructure

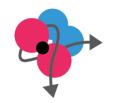

Description	Scale	Partner
Adsorption infrastructure (ECCSEL)	Lab-scale	ETH
Cycling adsorbent analyser	Lab-scale	ECN
Single- and multi-column reactive PSA/TSA equipment	Pre-pilot, TRL 5	ECN
Equipment for measurements of density, speed of sound and dielectric permittivity	Lab-scale	RUB
Vertical flow facility	Pilot-scale	SINTEF
Pipe and vessel depressurization (ECCSEL)	Lab-scale	SINTEF
Core-flooding laboratory	Lab-scale	ICL
Batch-reactor for mineral-dissolution kinetics	Lab-scale	ICL
Equipment for measurements of CO ₂ -brine-mineral contact angle, interfacial tension and phase behaviour	Lab-scale	ICL
Hydrothermal laboratory (ECCSEL)	Lab-scale	BGS
Geo-microbiology laboratory (ECCSEL)	Lab-scale	BGS
Rock deformation laboratory (ECCSEL)	Lab-scale	SCCER
Micro-seismic monitoring arrays	Lab-scale	SCCER
Mt. Terri research rock laboratory (EPOS)	Pilot-scale	SCCER


H₂-CCS chain tool and evaluation methodologies for integrated chains

WP1: H₂ supply chain and H₂-CO₂ separation

• ETH, PSI, ECN, MEFOS, RUB, UU

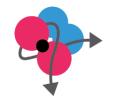
- Enable efficient H₂ production and CO₂ capture at different plant sizes.
- Find ways to increase the efficiency and productivity of natural gas/biogas reforming and CO_2/H_2 separation independently of the plant size.
- Integrate H₂ production and CO₂ capture with significant industrial processes such as steel production
- Characterize the properties of H₂ mixed with CO₂, CO, and CH₄.
- The research spans the range from the phenomenon level (RUB) via lab-
- scale experiments (ETH and ECN) to the pre-pilot scale (ECN).


WP2: CO₂ transport, injection and storage

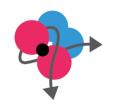
• **SINTEF**, BGS, SCCER, ICL, RUB – *De-risk storage*.

- Develop an accurate property model for CO₂-brine in the presence of impurities.
- Mature and validate tools for the safe, efficient and cost-effective design and operation of CO₂ pipelines and injection wells.
- Perform petrophysical chemical analyses for the characterization and selection of storage sites in Switzerland.
- Design and perform decameter-scale experiments at the Mt Terri research rock laboratory.
- Reduce uncertainties in injection, storage and monitoring of CO₂ produced by NG reforming for H₂ production.

WP3: Business case development for H₂-CCS integrated chains


- New partner, SDL, FC
- Assess the regulatory background, identify barriers, mitigation strategies and opportunities for H₂-CCS.
- Assess the macro-economic, market and fiscal background to identify plausible business models.
- Develop business models and business case templates for use in the WP5 case studies.

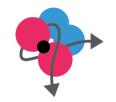
WP4: H₂-CCS chain tool and evaluation methodologies for integrated chains


• ICL, SINTEF, PSI, RUB, TNO

- Enable the evaluation of integrated H₂-CCS chains with respect to technological and economic efficiency, operability and environmental impact
- Develop an open-source systems modelling framework with a steady-state design mode and a dynamic operational mode.
- Develop multiscale models and an integrated modelling approach for the chain components incorporating results from WP1 and WP2.
- Apply the methodology in conjunction with the case studies in WP5 with respect to (i) the potential time evolution of the system and (ii) integrated assessments of proposed designs.

WP5: Case studies

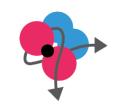
- SINTEF, BGS, TNO, UU, ECN, RUB, PSI, ICL, SDL, ETH, SCCER, CW, FC, INEOS, SE, AKSO, GERG
- Develop a roadmap for decarbonizing the Rotterdam industry
- Decarbonize the Swiss transport sector and prepare the way for a Swiss CO₂ storage site
- Support the UK H21 roadmap
- Decarbonize German natural gas as an energy carrier
- Evaluate the benefit of converting Norway's NG resources to H₂ with CCS



Status

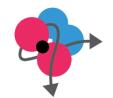
- 1. August: Consortium Agreement signed
- 8 September: ACT R&D Project Agreement Document signed
- 19–20 September: Kick-off meeting (Brussels)
- ELEGANCY has a
 - relevant
 - ambitious
 - high quality
 - work plan.

14


I think we can make a difference.

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), FZJ/PtJ (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco AS and Statoil Petroleum AS, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.



ELEGANCY – objectives

Fast-track the decarbonization of Europe's energy system by exploiting the synergies between two key low-carbon technologies: CCS and H₂. To this end, **ELEGANCY will:**

- Develop and demonstrate effective CCS technologies with high industrial relevance
- Identify and promote business opportunities for industrial CCS enabled by H₂ as a key energy carrier by performing 5 national case studies
- Validate key elements of the CCS chain by frontier pilot- and laboratory-scale experiments using inter alia ECCSEL and EPOS research infrastructure
- Optimize combined systems for H₂ production and H₂-CO₂ separation
- De-risk storage of CO₂ from H₂ production by providing experimental data and validated models
- Develop simulators enabling safe, cost-efficient design and operation of key elements of the CCS chain
- Provide an open source techno-economic design and operation simulation tool for the full CCS chain, including H₂ as energy carrier

