

CCUS in the IPCC 1.5°C scenario

Utrecht, 2018.12.04

tom.mikunda@tno.nl

Before we start...#ClimateStrike

Photos – ABC News – Andie Noonen

#COP24 Katowice

The 'Paris Rulebook'

- Common Timeframes
- Reporting and accounting methodologies
- Transparency framework

Country ambitions

- Nationally determined contributions (NDCs)
- 2020 deadline

• Financing

- Green climate fund
- \$100 billion per year by 2025

COP24 · KATOWICE 2018 UNITED NATIONS CLIMATE CHANGE CONFERENCE

...meanwhile in Paris

Photos – Getty

IPCC Special Report 1.5°C

- Intergovernmental Panel on Climate Change – 1988
- Requested in the Paris Agreement
- What are the impacts of 1.5°C? -Pathways to get there by 2100
- 91 authors, 40 countries, 6000 scientific references
- Outcomes to feed into COP24

INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

Global Warming of 1.5°C

An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

Impacts of reaching 1.5°C

- Climate models project robust differences in regional climate characteristics between present-day and global warming of 1.5°C, and between 1.5°C and 2°C
- Extreme hot days in mid-latitudes, warm up by 3°C in 1.5 °C scenario, and 4°C in 2°C / Extreme cold nights in high latitudes warm by up to about 4.5°C at 1.5°C and about 6°C at 2°C
- Higher risks from droughts and precipitation deficit, and higher risks of heavy precipitation in 2°C
- 0.1 m less sea-level rise 10 million people less exposed to associated risks
- Reduction in land and marine biodiversity loss

Modelled responses to 1.5°C scenario

Completed using Integrated Assessment Models (IAMs) (90 scenarios)

Not overshooting 1.5°C means a 45% reduction on 2010 levels by 2030 (2°C 25%), and net-zero by around 2050 (2°C – 2070)

Cumulative emissions for a 1.5° C must not exceed $\sim 3000 \text{ GtCO}_2$ up to 2500 GtCO₂ has been emitted already

b) Stylized net global CO₂ emission pathways Billion tonnes CO₂ per year (GtCO₂/yr)

2020

60

50

40

30

20

10

1980

c) Cumulative net CO₂ emissions Billion tonnes CO₂ (GtCO₂)

d) Non-CO₂ radiative forcing pathways Watts per square metre (W/m²)

IPCC - SPM.1

Illustrative model pathways for 1.5°C

Lower energy demand
Downsized energy
svstem

Sustainable development Limited acceptability BECCS

Follows historical patterns Cleaner production Resource and energy intensive lifestyles

CO ₂ emission change 2030 %*	-58	-47	-41	4
CO ₂ emission change 2050 %*	-93	-95	-91	-97
Final energy demand 2030 %*	-15	-5	17	39
Final energy demand 2050 %*	-32	2	21	44
Renewable energy 2030 %*	60	58	48	25
Renewable energy 2050 %*	77	81	63	70
Cumulative CCS until 2100**	0	348	687	1218
Of which BECCS**	0	151	414	1191

* Compared to 2010 levels

**GtCO₂

Focus on BECCS

- Carbon Dioxide Removal (CDR), is relevant for all scenarios
- CDR includes both Agriculture, Forestry and other Land-use (AFOLU), and Bio-CCS (BECCS)
- IAMs use BECCS for electricity, hydrogen production and liquid fuels
- In scenarios with less rapid near-term actions, BECCS becomes more prevalent
- Limited by biomass availability and sustainable land-use issues

Focus on Industry

- Carbon emissions reduced by 65-90% in a 1.5°C scenario
- Energy efficiency, electrification, reducing carbon content of non-electric fuels, innovative process and CCS
- IEA B2DS can be used to illustrate efforts to reach 1.5°C (well nearly)

Global direct CO₂ emissions from industry by scenario (IEA ETP, 2017)

CCS deployment rates in industry – 2DS and B2DS (IEA ETP, 2017)

CO₂ captured from by industry subsector (IEA ETP, 2017)

Key observations

- Pathways limiting global warming to 1.5°C with no or limited overshoot would require rapid and far-reaching transitions in energy, land, urban and infrastructure (including transport and buildings), and industrial systems.
- CCS is required in all scenarios that assume an increase in energy demand towards 2050.
- Delaying near-term climate action means that more CDR is necessary, particularly from BECCS.
- Personal observation BECCS and CCS appear to be framed separately, and the technological link between the two is not emphasized enough!
- To allow BECCS to happen, we need near-term CCS deployment!

