IN-SITU EXPERIMENTAL INVESTIGATION ON THE GROWTH OF AEROSOLS ALONG THE ABSORPTION COLUMN IN PCCC

Shreyas Harsha, Purvil Khakharia, Arjen Huizinga, Juliana Monteiro, Earl Goetheer, Thijs Vlugt

innovation

CO2 CATCHER CARBON CAPTURE PLANT

Hard coal fired power plant Maasvlakte, Netherlands

innovation for life

50 cm diameter absorber, capacity 6 ton of CO2 captured per day

PILOT CAMPAIGN (CATO-2)

ISSUE AT HAND

Aerosol emission

Karlsruhe testing campaigns - CATO

Effect of H₂SO₄ aerosols

EFFECT OF H₂SO₄ AEROSOLS ON AMP-PZ EMISSIONS

7

TNO innovation for life

AMP KTAURATE

EXTENSIVE TEST CAMPAIGNS

Aerosol testing done

At power plants: - Maasvlakte

- Electrabel Nijmegen
- ENBW Heilbronn
- RWE Niederaussem

At waste incinerator

- AVR

At dedicated aerosol generator setups

- Karlsruhe

Aerosol research:

- Determined relation between flue gas quality and emission
- Detailed models constructed

Unique facilities:

Fully controlled SO3

gas before capture

and soot spiking in flue

MECHANISM FOR AEROSOL EMISSIONS Volatility and reactivity is key

innovation for life

11 | Aerosol emission

TEST EQUIPMENT

TNO has recently developed infrastructure to generate H₂SO₄ aerosol droplets in-house, simulating the aerosols as observed in a power plant. A wide range of H₂SO₄ concentrations and thus, particle number and size distribution can be obtained from this setup.

SO3 GENERATION SYSTEM

NO innovation for life

Т

CO2 CAPTURE MINI-PLANT

innovation

From top left: Stage 3 (0.0265µm), Stage 4(0.0485µm), Stage 5 (0.087µm) and Stage 6 (0.147µm)

Benchmark test

TEST PLAN

- A first "empty column" test was conducted to understand survival of particles across the column and understand sampling methodology related influences.
- > This was followed by a test in the absence of H_2SO_4 aerosol in flue gas
- > Test with H_2SO_4 aerosol in flue gas is termed as "Benchmark test"
- Once the CO₂ capture unit is stable, perform particle measurement and measure gas composition at 5 different gas sampling points across the column FTIR & ELPI (5-8 mins at every sampling point)

Test no	Total Particle Number	parameters	
		Parameter	Value
1	Measurements in absence of solvent flow→ Empty column test	Flue Gas Flow Rate	4 m³/h
		CO ₂ in Flue Gas	12.5 vol.%
		Flue Gas Temperature	40°C
2	Absence of H ₂ SO ₄ aerosol	SO_3 in Flue Gas	5.25 ppm
2	in flue gas		
3	Benchmark test		15-02-2018

ABSENCE OF H₂SO₄ AEROSOL IN FLUE GAS

- Solution Section Content Action Content and Content Action Content Action Content Cont
- > MEA emissions of 381_{25} mainly in vapour phase.

NO innovation for life

RESULTS- BENCHMARK TEST

 Reduction in contribution of 0.006 & 0.0136µm to total number along the column

 Increase in contribution of 0.0265, 0.0485, 0.087 & 0.147 µm to total number

> Shift in Particle Size Distributions towards right (Larger Particles):

Growth of Aerosols

BENCHMARK TEST

- Total aerosol mass at absorber outlet is 1.32mg/m³. However, MEA aerosol mass is 850mg/Nm³
- Assuming MEA in aerosol is 850mg/Nm³ and, each droplet contains 5 mol/L of MEA, and a total number of 2.3E+07/cm³, the total aerosol mass should be 2700 mg/Nm³
- To account for the above mismatch;
 - Either each aerosol droplet contains much more than 5 mol/L of MEA (highly unlikely)
 - Larger particles not recorded by the ELPI+ leads to gross underestimation of aerosol mass

INO innovation for life

COMPARISON RIGOROUS MODELLING NTNU

Characterization and modelling of aerosol droplet in absorption columns Maheed et al, Int. J. Green. Gas Control. 58 (2017) 114–126

innovation for life

CONCLUSIONS

- > Typically 30-70% of the aerosols agglomerate or collide with the wall
- > ELPI measurements size distribution strongly temperature and sampling method depended
- > FT-IR measurements along the column can give insights in the mechanism
- > Total vapor-aerosol MEA measurements along the column indicate the majority of the MEA transfer to Aerosol emission takes place at the top of the column (as suggested by rigorous modelling NTNU)

FUTURE WORK

- Improve sampling method
- Mixed amine systems
 - 24

THANK YOU FOR YOUR ATTENTION

CONTACT: purvil.khakharia@tno.nl, earl.goetheer@tno.nl

111

for life