The role of CCS in the provision of long-term security of power supply and deep CO₂ emission reduction

William Zappa

Bas van Zuijlen (UU) Wim Turkenburg (UU) Gerard van der Schrier (KNMI) Machteld van den Broek (UU)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

Introduction: Background

Paris agreement

- Limit global warming well below 2°C, strive for 1.5 °C
- Estimated global C-budget: 400-1000 Gt CO_{2e} until 2100
- At least full decarbonisation of power sector likely needed
- C-negative technologies bioenergy with CCS (BECCS) direct air carbon capture (DAC) likely required

Decarbonisation of end-use sectors

• Electrification of transport and heat will lead to increased electricity demand

Utrecht University

Security of low-carbon portfolios with high shares of intermittent renewable energy sources (iRES)

Weather variability, impact of climate change

Introduction: Motivation

- Which generation portfolios are cost-effective for achieving **deep decarbonisation**?
- What is the **role of CCS** in these portfolios?
- How sensitive are these alternative portfolios to short-term weather variability and long-term climate change?

Method: Model setup

- Power system model built using PLEXOS® (Mixed-integer linear programming)
 - > Objective:

Min(NPV(CAPEX+FOM+VOM+Fuel))

- Model Western Europe for year 2050
- Consider:
 - 33% higher demand (EVs + HPs)
 - Clean slate: no legacy generators
 More ambitious climate action

Method: Decarbonisation scenarios

Method: Technologies

- Model free to optimise generation portfolios <u>except</u>:
 > Wind and PV limited by suitable area
 - > Hydro, geo, battery(EV), transmission are fixed

> Limited biomass (domestic potential \sim 5 EJ/y)

Results: Installed capacity

Battery Hydropower (PHS & STO) Hydropower (ROR) PV Onshore wind Offshore wind Other non-renewable (Mostly coal) Nuclear Gas OCGT Gas CCGT Geothermal Biogas OCGT Gas CCGT-CCS SECCS > DAC

- ◆ Peak demand
- imesSystem cost

Results: Additional runs

For deepest decarbonisation scenario -3.2 Gt/y:

- Allow biomass import
 No biomass constraint
- Public opposition to nuclear
 > Low nuclear (50 GW)
- Opposition to nuclear, fossil, biomass
 iRES + storage + DAC only

Conclusion

- CCS plays **vital role** in deep decarb: enables BECCS & DAC
- **BECCS+NGCC** seems more cost-effective than NGCC-CCS, though biomass costs, env. impact & potential uncertain
- 90% CCS capture limits fossil-CCS in deep decarbonisation: residual emissions must be offset
- Deep decarbonisation with wind and PV alone not possible: need CCS to enable DAC, but even then expensive!
- Without NGCC-CCS or BECCS, **3x iRES and storage required**
- Nuclear marginally favored as zero-carbon baseload but costs are uncertain: any zero-C dispatchable mix will do (e.g. BECCS(+NGCC), NGCC-CCS (100%), iRES + storage, nuclear)

Acknowledgement: This study received Topsector Energy funding from the Dutch Ministry of Economic Affairs and Climate Policy.

For further details please contact <u>b.r.h.vanzuijlen@uu.nl</u>

