# INITIATING LARGE-SCALE STORAGE IN THE NETHERLANDS OFFSHORE

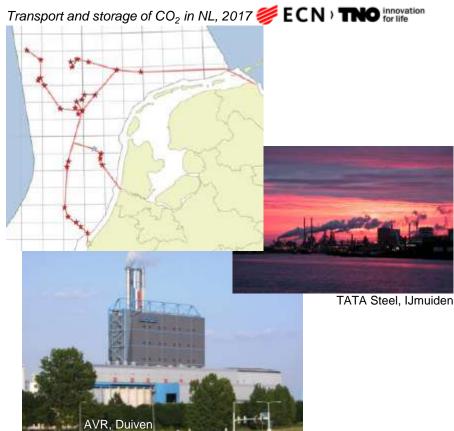
Filip Neele (TNO), Chris Gittins (TAQA), Ton Wildenborg (TNO) & Tom Mikunda (TNO)



#### **CCS 'SITUATION' NETHERLANDS, 2017**

- Government target: meet Paris agreement targets
  - > 49% reduction in CO<sub>2</sub> emissions in 2030 (compared to 1990 levels)
  - Implying total additional reduction of 56 Mtpa
  - Of which 12 Mtpa by closing down coal fired power plants
  - Industry contribution: 22 Mtpa emission reduction
    - > Process efficiency: 3 Mtpa
    - Recycling: 1 Mpta
    - ) CCS: 18 Mtpa
      - May 2018: ambition reduced to 7 Mtpa by 2030
  - M€ 300 /yr to be made available to develop policies, build expertise, run pilot projects (not just CCS!)



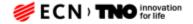

'No to CO<sub>2</sub>'





# **CURRENT CCS ACTIVITIES IN THE NETHERLANDS**

- Rotterdam harbour: Porthos consortium
  - > 20% of national emissions
  - Develop into 'green port'
  - Continue economic activity under increasingly strict greenhouse gas emission regulations
  - Target ~5 Mtpa by 2030; to grow beyond 2030
- Steel plant (TATA Steel)
  - > HIsarna process: pilot demo plant
  - CO<sub>2</sub> production 0.1 0.5 2-3 Mtpa
- Waste processing
  - Capture projects (CCU) starting or ongoing

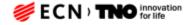




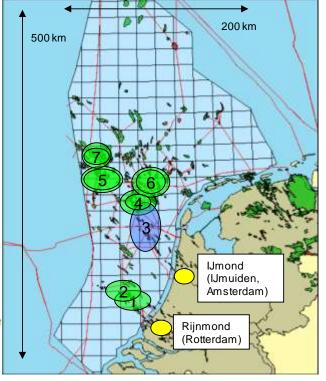
#### **ROAD CCS PROJECT** (CANCELLED 2017)






## **CO<sub>2</sub> SUPPLY PROFILES**





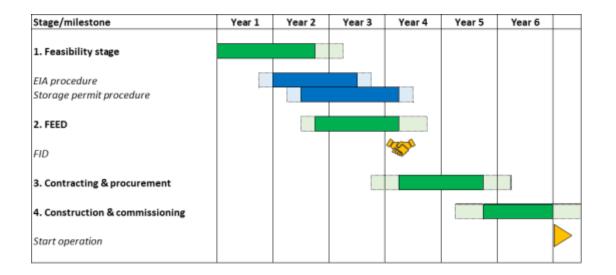

5 Initiating large-scale storage in The Netherlands offshore

#### **STORAGE CAPACITY ASSESSMENT**



| #   | Name        | Capacit<br>y (Mt) | Туре                   | Available<br>(year) | Fields in<br>cluster | Distance<br>from<br>Rotterdam<br>(km) |
|-----|-------------|-------------------|------------------------|---------------------|----------------------|---------------------------------------|
| 1   | P18         | 40                | Gas fields             | 2020                | 2                    | 25                                    |
| 2   | P15         | 35                | Gas fields             | 2025                | 3                    | 40                                    |
| 3   | Q1          | 135-235           | Saline fm<br>gas field | 2020                | 1                    | 100                                   |
| 4   | K15         | 165               | Gas fields             | 2020                | 6                    | 150                                   |
| 5   | K08         | 195               | Gas fields             | 2020                | 6                    | 180                                   |
| 6   | L10         | 175               | Gas fields             | 2022                | 3                    | 170                                   |
| 7   | K05         | 150               | Gas fields             | 2028                | 9                    | 200                                   |
| Tot | al capacity | 960 Mt            |                        |                     |                      |                                       |




Nr 3: depleted aquifer connected to four small oil fields

GHGT-14, 22 October 2018

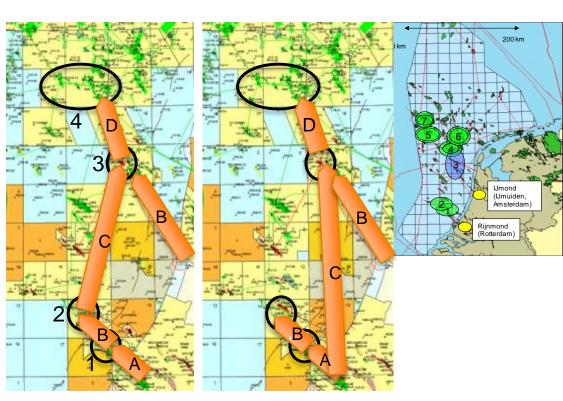
#### **STORAGE DEVELOPMENT LEAD TIMES**



- Re-using platforms, wells
- New build pipelines
- Developing a depleted gas field into a CO<sub>2</sub> storage site takes at least 6 years



# **NETWORK DEVELOPMENT**



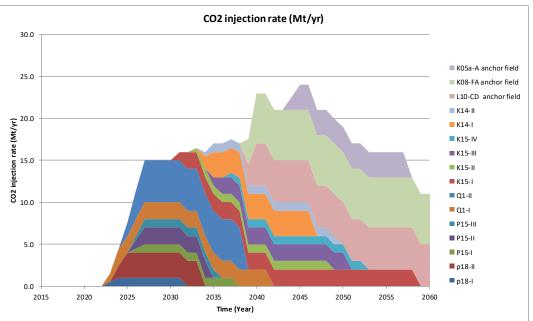

#### 'Boundary conditions'

- Depleted field injection management
  - Warm injection near shore cluster, CO<sub>2</sub> through insulated pipeline
  - Cold injection from offshore hubs, CO<sub>2</sub> arrives at hub at sea water temperature
- Offshore clusters choice and workover
  - Availability
  - Cluster fields size
  - Fields risk level assessment
  - Unit storage cost estimates

## **POTENTIAL NETWORK DEVELOPMENT SCENARIOS**

- CO<sub>2</sub> supply from Rotterdam & Amsterdam regions
- First element ('A') currently being designed
- Design element 'A' depends on choices made for later elements
- Selecting network development options:
  - > Unit cost of storage and transport
  - Risk assessment of clusters and fields
  - Availability of fields, platforms & wells
  - Storage capacity & injection rates




ECN > TNO innovation for life

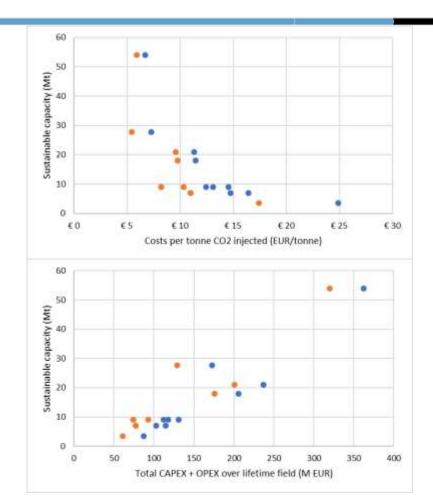
#### **DEVELOPMENT OF CO<sub>2</sub> STORAGE SITE PORTFOLIO**



#### **Depleted gas fields**

- Gas fields: typical capacity 15-50 MtCO<sub>2</sub>
- Developing field clusters
  - > Connect several fields to central hub
- Storage capacities 15-20 Mtpa reached by stacking *many* fields
  - > Up to10 fields online in parallel
- > High rate of development
  - Fields brought online on yearly basis



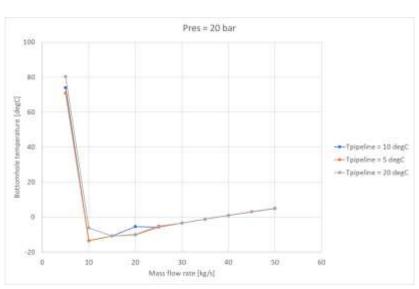

#### **COST ESTIMATES**

ECN > TNO innovation for life

| Re-use vs new build Platforms |                                   | Existing<br>export<br>platform | New<br>export<br>platform | Existing<br>satellite<br>platform | New<br>satellite<br>platform |
|-------------------------------|-----------------------------------|--------------------------------|---------------------------|-----------------------------------|------------------------------|
| > Wells                       | Modification or new build cost    | 21                             | 60                        | 13                                | 60                           |
|                               | (M€)<br>Operational costs (M€/yr) | 16                             | 6                         | 6                                 | 6                            |
|                               | Decommissioning (M€)              | 31                             | 20                        | 20                                | 20                           |
|                               |                                   |                                | Cost level (M€)           |                                   |                              |
|                               | Workover for transfe              |                                |                           | 8                                 |                              |
|                               | Newly drilled and comp            | oleted                         | 21                        |                                   |                              |
|                               | Operational costs (ME             | JRpa)                          | 2                         |                                   |                              |
|                               | Plug and abandon                  |                                |                           | 6                                 |                              |

## **UNIT STORAGE COST**

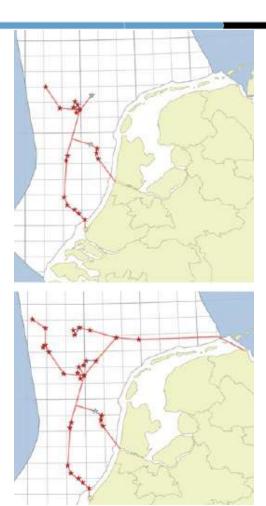
- Cost elements
  - Platform
    - Satellite or large central platform (both M€ 60)
    - Re-use (modified) or new (M€ 13 or 21)
    - > Opex (6 or 16 M€ /yr)
  - > Wells
    - > Workover (8 M€ /well)
    - ) Opex (2 M€ /yr/well)
    - Abandonment
- Abandonment cost in case of re-use (platform & wells)
  - Included in CO<sub>2</sub> storage cost (.)
  - Not included, is part of gas field production cost()




Solving these issues will affect the design of the T&S infrastructure

#### **DEVELOPING T&S INFRASTRUCTURE**

#### Low-pressure wells


- Issue: (very) low depletion pressures cause issues when injecting CO<sub>2</sub>
  - Injection to start at low rates to avoid low temperatures:
    - In the well (freezing of well bore)
    - At bottom hole (freezing of near well area, hydrate formation)
  - Direct injection from backbone pipeline (~ 100 bar) possible only once reservoir pressure above about 60 bar
  - At lower pressures: shut-in & start-up to be handled carefully
- Example showing bottom hole temperature in a low-pressure well for various flow rates (50 kg/s = 1.6 Mtpa)





## **ONGOING WORK**

- > Hot vs cold CO<sub>2</sub> injection
  - How to manage safe injection when reservoir pressure is (very) low?
  - What are feasible rates when CO<sub>2</sub> is at 80 bar, 10 °C at offshore hub?
- Network development choices
  - Design and lay-out first elements impact on options in later phases of network development
  - Later phase must be clear at start network development
- Network flexibility and robustness
  - Assurance of storage capacity supply
  - Managing (absorbing) operational upsets





#### Acknowledgements

ACT ALIGN CCUS Project No 271501

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is cofunded by the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

www.alignccus.eu

# THANK YOU FOR YOUR ATTENTION

TNO.NL/ECNPARTOFTNO



