

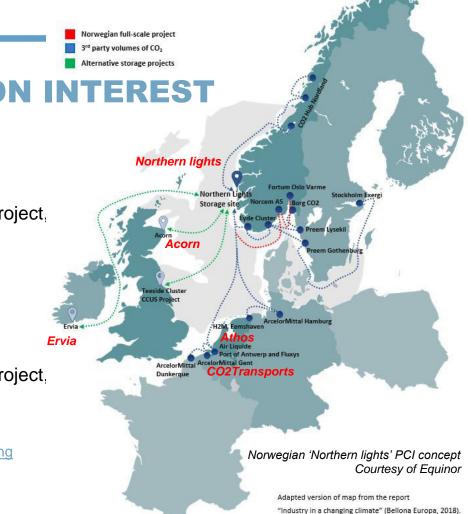

### CCS – 2019 EUROPE, NETHERLANDS

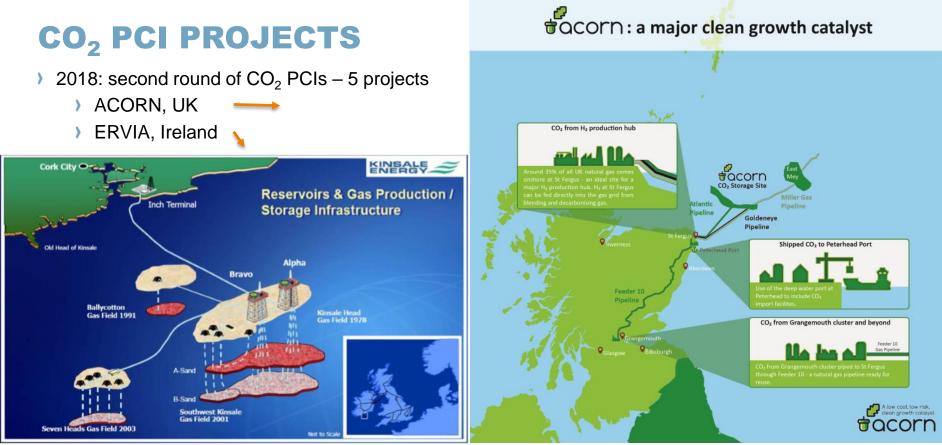
- Projects of Common Interest PCIs
- London Protocol
- > Activities in The Netherlands
- Ongoing work
- > Way ahead

# PROJECTS OF COMMON INTEREST (PCI)





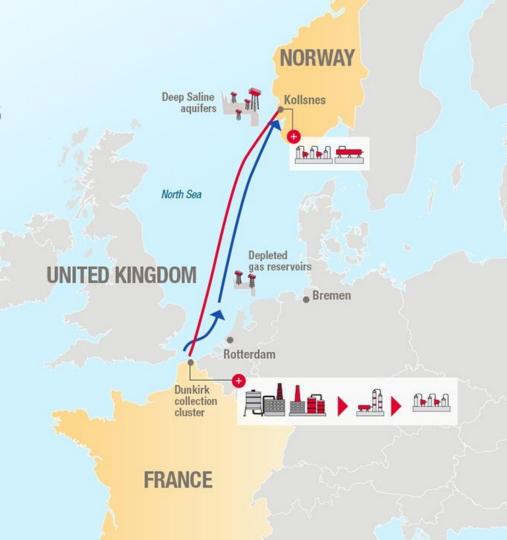

### **EU PROJECTS OF COMMON INTEREST**


- > Key cross border infrastructure projects that link the energy systems of EU countries
- > PCIs may benefit from:
  - accelerated planning and permit granting
  - a single national authority for obtaining permits
  - improved (streamlined) regulatory conditions
  - lower administrative costs due to streamlined environmental assessment processes
  - > increased public participation via consultations, and increased visibility to investors.
- > PCIs have the right to apply for funding from the Connecting Europe Facility (<u>CEF</u>).
- > CO<sub>2</sub> transport projects applicable to apply for PCI status from 2017

### **CO<sub>2</sub> PROJECTS OF COMMON INTEREST**

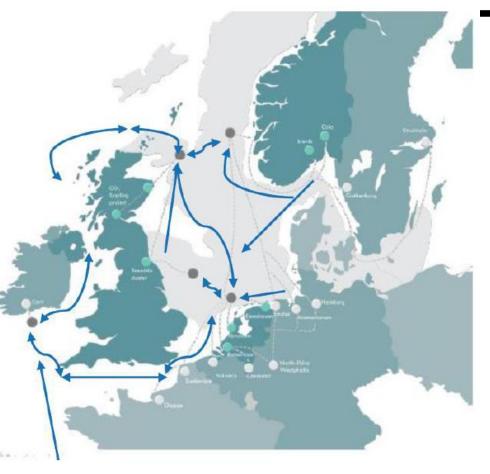
- > 2017: first round of CO<sub>2</sub> PCIs 4 projects
  - Northern Lights (Norway + UK)
  - Rotterdam Nucleus (Netherlands + UK)
  - CO2 SAPLING (transport element of ACORN project,
  - Teesside (UK + NO)
- > 2019: second round of CO<sub>2</sub> PCIs 5 projects
  - Northern Lights (Norway + UK + NL + EI)
  - CO2TransPorts (Netherlands + Belgium)
  - CO2 SAPLING (transport element of ACORN project,
  - ERVIA (Ireland + NL + UK + NO)
  - > Athos (Netherlands + Ireland)

(https://ec.europa.eu/info/sites/info/files/detailed\_information\_regarding the candidate projects in co2 network 0.pdf)





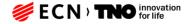

6 CATO day - transport and storage


### **OTHER DEVELOPMENTS**

- > France: "3D project for CCS"
- > 11 stakeholders
  - > A.o., ArcelorMittal, Total, IFPEN
- > DMXTM: new solvent
  - IFPEN development
  - > 35% reduction in capture energy need
- > Develop Dunkirk cluster
  - > 10 Mt/yr of CO<sub>2</sub>
  - > Operational by 2035
  - Storage in North Sea



### **LARGE-SCALE CCS**


- > Huge capacity for storing CO<sub>2</sub> in North Sea
- First elements of transport infrastructure being designed / developed
- Access to storage for other countries
  - Germany Northrein Westphalia
  - > Belgium
  - France
  - Baltic countries



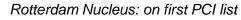
. . .

# > LONDON PROTOCOL





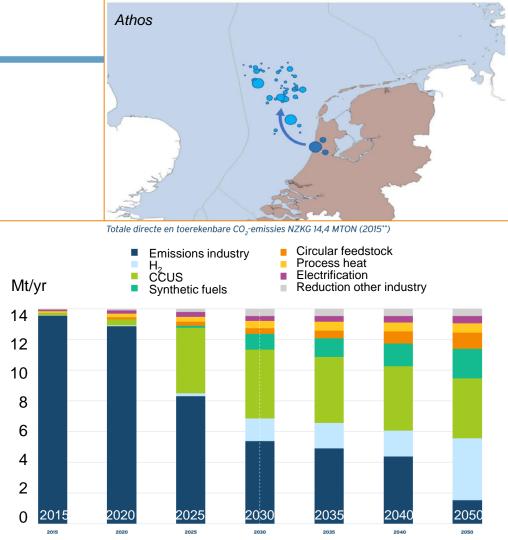
### **LONDON PROTOCOL**


- The Protocol promotes the protection of the marine environment by prohibiting the dumping of wastes and other matter into the sea (1972/1996)
- In 2007, an amendment entered into force which permitted CO<sub>2</sub> streams to be considered for dumping under the London Protocol.
- > However, currently the LP:
  - Allows cross-border transport of CO<sub>2</sub>
    - ) ... as feedstock
  - Does not allow cross-border transport of CO<sub>2</sub>
    - ...for storage
- Norway will submit proposal to adapt the LP to accept bi-lateral agreements between countries to allow cross-border transport with the intention to store below the North Sea (Q2 2019)

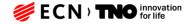
## > CCS ACTIVITIES IN NL





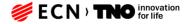

- > Porthos, Rotterdam
  - > 4-5 Mt/yr by 2030
  - Multi-user network, multi-store network
  - Links with Antwerp, Terneuzen, through PCI
  - > Offshore P18 cluster: first target for storage
  - First injection 2023






https://www.rotterdamccus.nl/

- Athos, IJmond
  - > 4-5 Mt/yr, post 2025
  - Multi-user network, multi-store network
  - Tata, DOW
  - First injection 2027
  - > AEB (CCU: e.g., greenhouses)




https://www.portofamsterdam.com/sites/poa/files/nzkg\_vliegwiel\_voor\_een\_duurzame\_toekomst\_0.pdf



- Aramis, Den Helder
  - > Start date and volume: to be defined
  - Import by ship and / or pipeline
  - Storage in K and L blocks
- H-vision, Rotterdam
  - Blue hydrogen: H<sub>2</sub> from gas, with CCS
  - $H_2$  as fuel and feedstock
  - > 2025: 2 Mt/yr; 2030: 5-6 Mt/yr
  - Link with Porthos for storage





- H2M, Eemshaven
  - > Blue H<sub>2</sub> from natural gas from Norway
  - > CO<sub>2</sub> by ship to Norway (Northern Lights)
  - > H<sub>2</sub> as fuel and / or feedstock (e.g., Magnum power plant)
  - FID 2021, start H<sub>2</sub> production (with CCS) 2024
  - > Volumes: not given
- BioCCS, Eemshaven
  - > 250 MW bioCCS demo plant
  - Start 2030 (with CCS), but possibly earlier with CCU

https://www.klimaatakkoord.nl/binaries/klimaatakkoord/documenten/publicaties/2019/ 01/08/achtergrondnotitie-industrie-jff-css/Industrie+-+JFF+CSS+Eindrapportage.pdf



- Chemelot, Geleen
  - > Target: 0.5 0.8 Mt/yr by 2025
  - > OCI: 0.5 Mt/yr of pure CO<sub>2</sub>
  - Transport: liquid CO<sub>2</sub> by barge to Rotterdam / Porthos?
    - > Barges to be developed and regulated
  - > Timing uncertain
- > Zeeland, North Sea Port
  - Implementation CCS by 2030
  - 1.7 Mt/yr, increasing to 3.1 Mt/yr by 2040 then decrease due to use of blue H<sub>2</sub>
  - Pipelines to Rotterdam





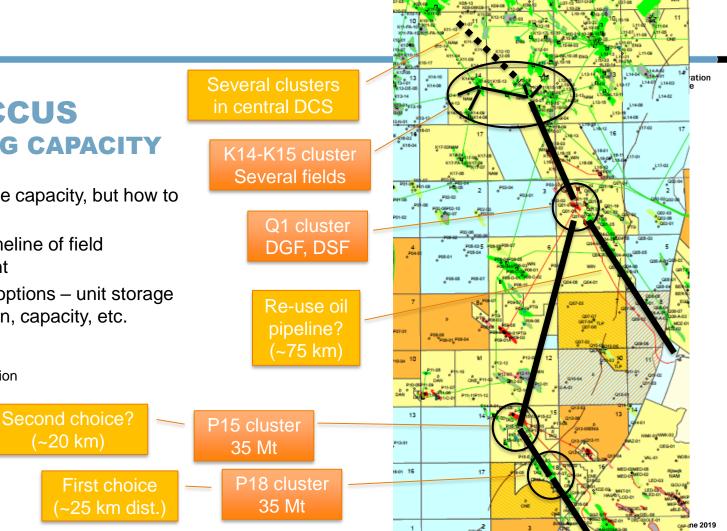
https://www.klimaatakkoord.nl/binaries/klimaatakkoord/documenten/publicaties/2019/ 01/08/achtergrondnotitie-industrie-jff-css/Industrie+-+JFF+CSS+Eindrapportage.pdf

### **ONGOING WORK**

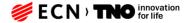


### **ONGOING WORK**

- Network development
  - Three consortia counting on NL offshore storage capacity
  - Belgium, France, Germany assuming storage in NL offshore
  - > Which are the potential development scenarios?
- Storage in depleted gas fields
  - Available infrastructure, proven storage capacity, proven seal
  - How to handle pressure drop between transport pipelines and reservoir?


### ECN > TNO innovation for life




### **ALIGN - CCUS DEVELOPING CAPACITY**

- Abundant storage capacity, but how to develop it?
  - Potential timeline of field > development
  - Ranking of options unit storage cost, location, capacity, etc.

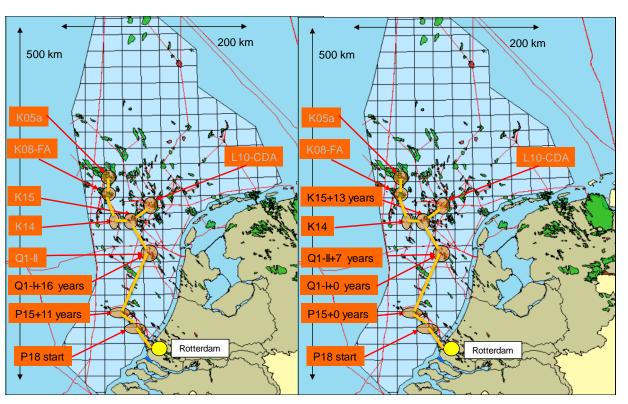
DGF: depleted gas field DSF: deep saline formation



19 CATO day - transport and storage

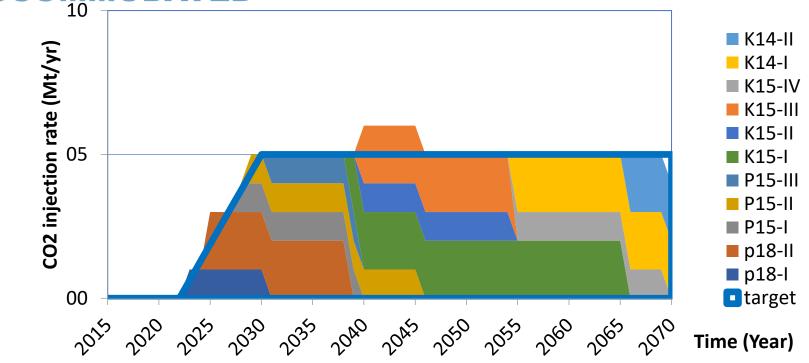


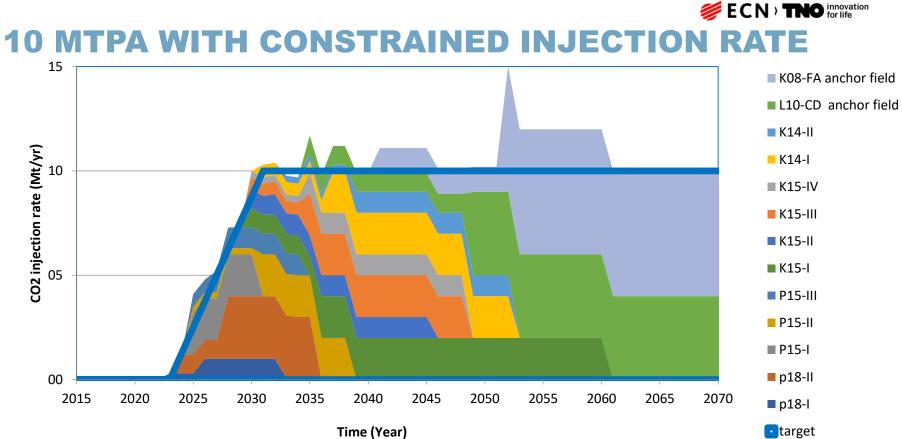
### POTENTIAL NETWORK DEVELOPMENT SCENARIO


- CO<sub>2</sub> supply from Rotterdam region
- First element ('A') currently being designed
- Design element 'A' depends on choices made for later elements
- > Network development depends on:
  - > Unit costs of storage and transport
  - Risk assessment of clusters and fields
  - Availability of fields, platforms & wells
  - Storage capacity & injection rates

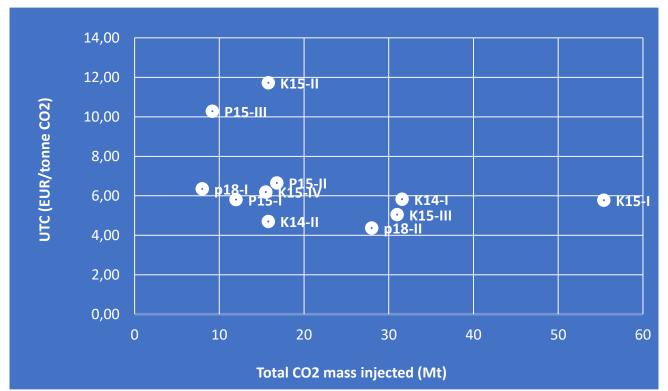


ECN > TNO innovation for life


### H-VISION ROTTERDAM


- Two scenarios
  - ) 'Porthos only' (no  $H_2$ )
    - > 4 Mtpa
    - 80 Mt total
  - ) 'Porthos' + H<sub>2</sub>
    - > 4 + 10 Mtpa
    - > 290 Mt total
- Scenario duration 25 yr
  ~ 2025 2050
- Total capacity offshore: 1600 Mt (EBN-Gasunie, 2017)

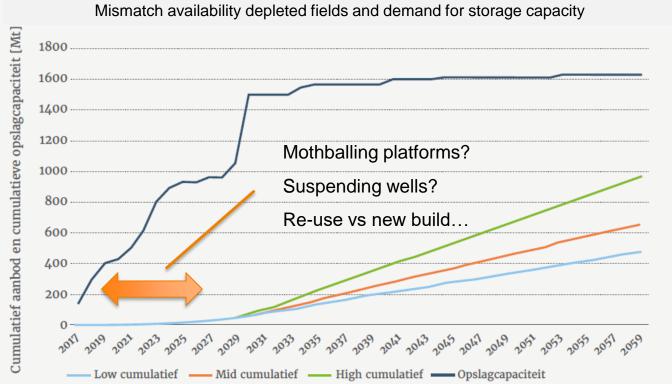





### 5 MTPA SCENARIO CAN BE EASILY ACCOMMODATED





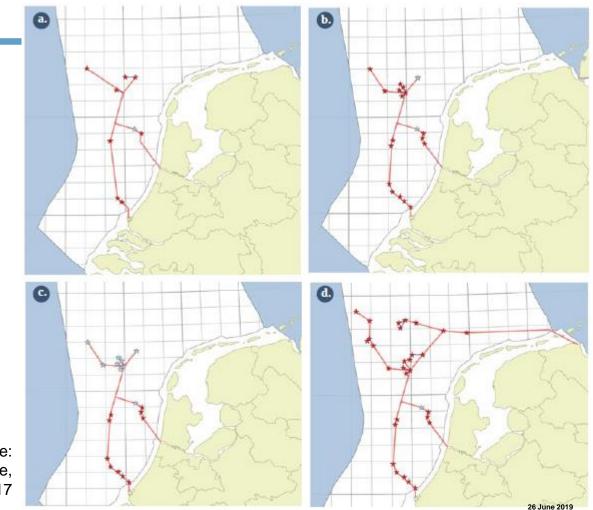

# ECN ) TNO for life UNIT TECHNICAL COSTS OF STORAGE (EUR/TONNE



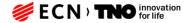
 $CO_2$ )



### **CO<sub>2</sub> SUPPLY VS. STORAGE CAPACITY**

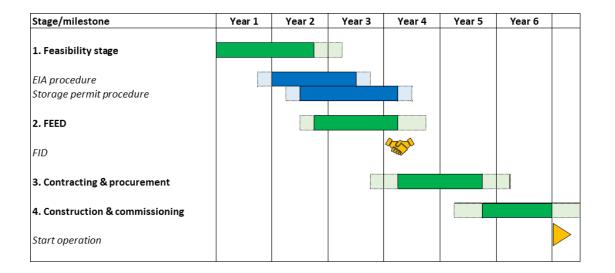



Source: EBN-Gasunie, 2017


26 June 2019

### POTENTIAL CCS DEVELOPMENT

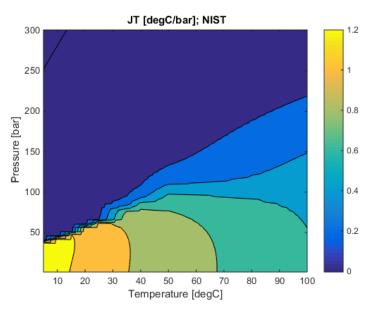
A. Low case, re-useB. Mid case, re-useC. Mid case, newD. High case, re-use




Source: EBN-Gasunie, 2017



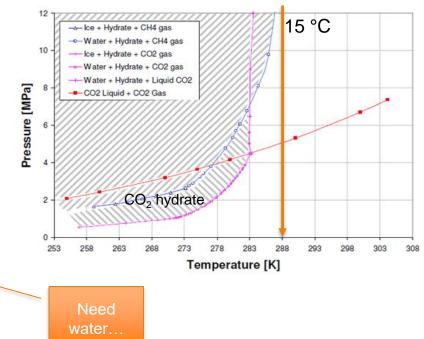
### **STORAGE DEVELOPMENT LEAD TIMES**


- > Re-using platforms, wells
- > New build pipelines
- Developing a depleted gas field into a CO<sub>2</sub> storage site takes at least 6 years



ECN ) TNO innovation for life

### **OPERATIONAL CONDITIONS** OFFSHORE T&S NETWORKS

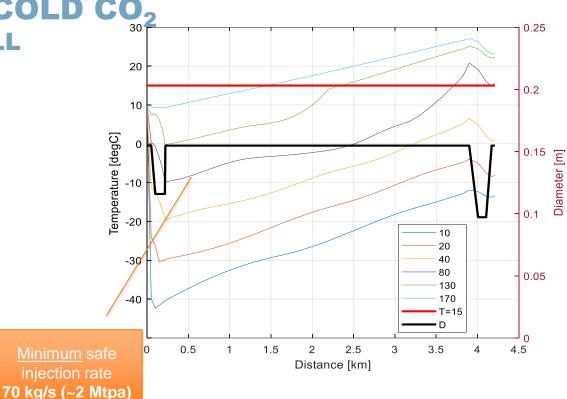

- > Transport trunklines: high pressure for efficiency
  - > 80 100 bar, liquid CO<sub>2</sub>, single phase
  - Temperature 5 10 °C (sea water temperature)
- > NL reservoirs often at low pressure after production
  - > 20 bar or lower not uncommon
  - Temperature typically >100 °C, > 2.5 3 km depth



ECN > TNO innovation for life

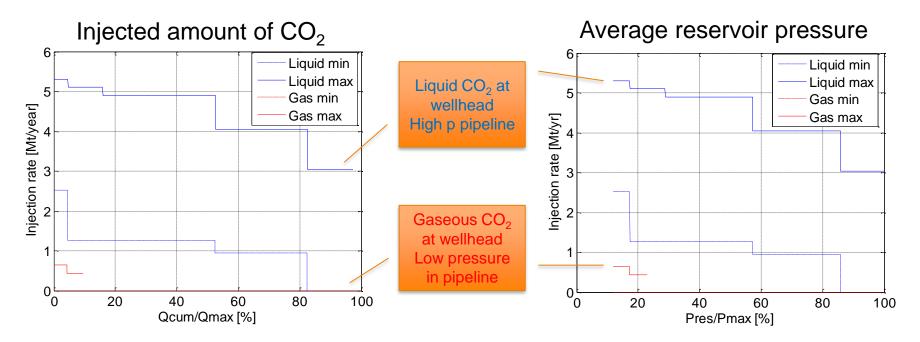
### **RE-USING DEPLETED FIELDS** (AND THE WELLS)

- Safe storage
  - > Well integrity maintained during operations
    - > Injection on off: temperature cycling in well
    - > Wellhead: T > -10 °C (material constraint)
  - Reservoir and cap rock integrity preserved
    - > Large contrast temperature CO<sub>2</sub> reservoir
- Maintain operability of reservoir
  - Avoid salt deposition and hydrate formation
  - Hydrates: **bottomhole T > 15 °C**
- > Flow rates through well: limits due to erosion, vibration

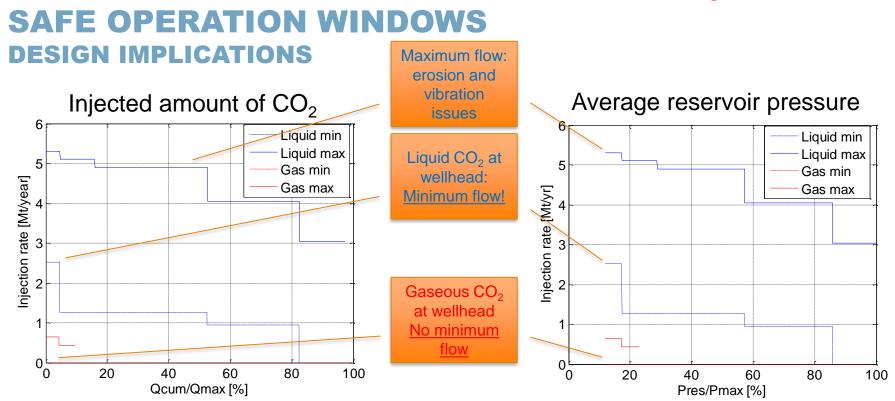


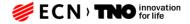



### **EXAMPLE: LIQUID, COLD CO<sub>2</sub>** CONDITIONS ALONG WELL


- > TVD ~ 3.5 km (deviated well)
- > At wellhead:
  - Massflow: 10 170 kg/s
  - Pipeline pressure 100 bar
  - Wellhead temperature: 10 °C
- Near bottom of well:
  - > Reservoir pressure: 20 bar
  - Reservoir temperature: 120 °C

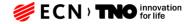
Results depend on well completion, reservoir properties, etc.: system design to take these phenomena into account





ECN > TNO innovation for life

### SAFE OPERATION WINDOWS DESIGN IMPLICATIONS




ECN > **TNO** innovation for life





### **NETWORK DEVELOPMENT** IMPLICATIONS OF USING DEPLETED FIELDS (1/2)

- Near-shore: injecting warm CO<sub>2</sub> is an option
  - > ROAD project: insulated pipeline, no cooling after compression
  - Wellhead temperature up to 60 °C, gas phase (30-40 bar)
- > Further out offshore: CO<sub>2</sub> is cold
  - Insulated pipelines not an option
  - Likely solution for initial phase: gaseous (lower rates)
    - > Liquid injection leads to high minimum rate limited operational flexibility



Must get clarity on

hydrate formation: will it

occur in depleted gas fields?

### **NETWORK DEVELOPMENT** IMPLICATIONS OF USING DEPLETED FIELDS (2/2)

- Source of CO<sub>2</sub>: determines approach in filling reservoirs
  - Low-pressure pipeline, gas phase, open flow: can accommodate low-rate of highly variable supply
  - > High-pressure pipeline, controlled flow, with high minimum rate: requires high-volume, steady supply
- > Timeline
  - Initial phase (until pressure in reservoir is about 50 bar): gaseous CO<sub>2</sub>
    - ➤ Lower rates for first 1 2 years (depends on reservoir capacity)
  - Then switch system (pipeline wells reservoir) to liquid injection
- Re-use of platforms
  - Limited equipment needed: valves, metering, monitoring (no compression, no pumps)



### IMPLICATIONS FOR OFFSHORE CCS DEVELOPMENT

- Field availability, pipeline re-usability, status of wells (legacy P&A wells!)
  - Impact network development routes
  - > Need DCS-wide facility-specific dataset and re-use plan?
- Storage development timeline:
  - Depends on rate of supply
  - > Affected by characteristics of supply: intermittent vs 'base load', low vs high volume
    - > Gaseous vs liquid injection & lead time to reach 50 bar reservoir pressure
- Re-use vs new build
  - Interval between CoP and start of injection
  - > Age, status of facilities, ...

### > WAY AHEAD





### WAY AHEAD

- Networks
  - Network development
  - > Choice of fields
    - > Plan / field selection
  - Network flexibility
  - Impact variable supply & storage
- Operational plan(s)
  - Defining the operational window
    - > Managing temperature in system
  - Risk management plan

- Monitoring & modelling uncertainties
  - > Geological uncertainty, monitoring accuracy
  - Verification
  - > Effective, efficient monitoring systems
  - > Proving storage system performance
  - > Closure, handover: storage system stability
- Various
  - Hydrates

# THANK YOU FOR YOUR ATTENTION

122212

### TNO.NL/ECNPARTOFTNO



### ECN > TNO innovation for life