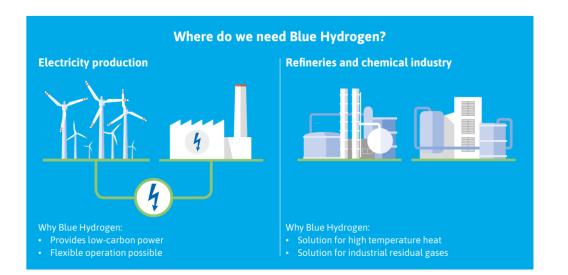
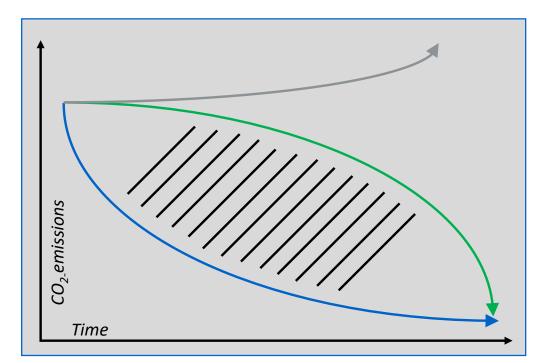
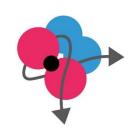


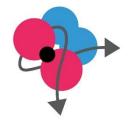
1

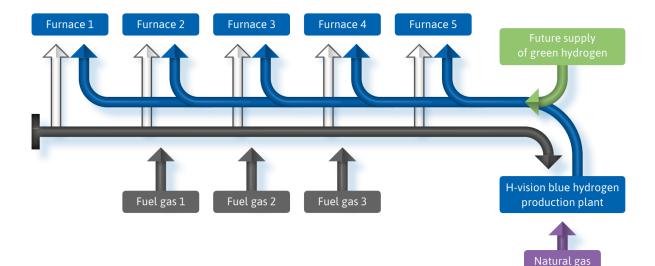

WP5 Dutch Case studies (H-vision project)


Robert de Kler 26 Nov 2019

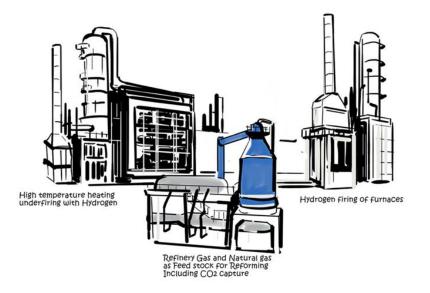


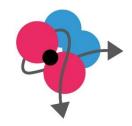
Context & significance

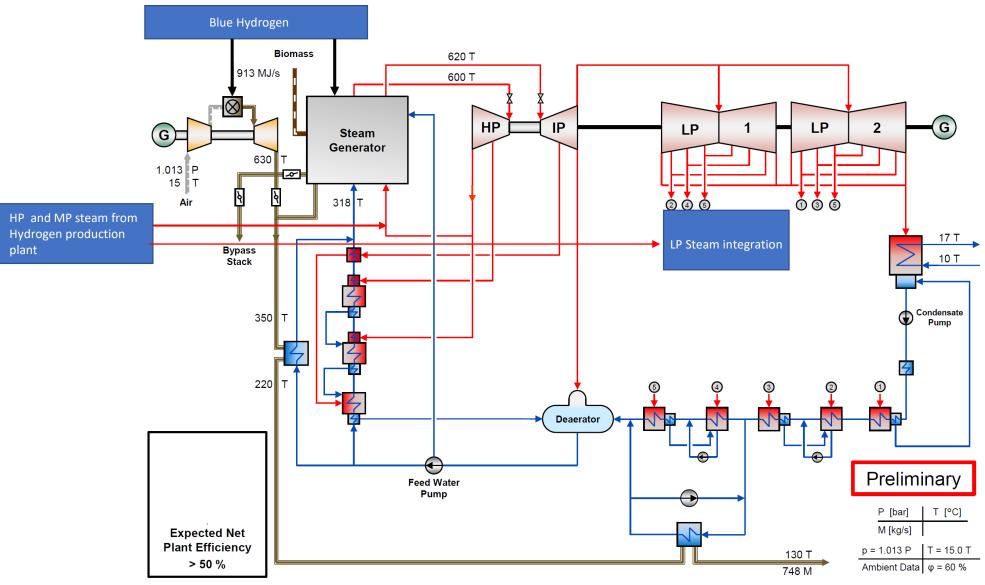

- Decarbonize port industry rapidly using precombustion blue H₂ for high temperature processes & electricity generation
- Pave the road for the Green Hydrogen Economy
 - Develop market for hydrogen
 - Make user innovation with hydrogen possible



The Dutch Case study (Rotterdam Port)

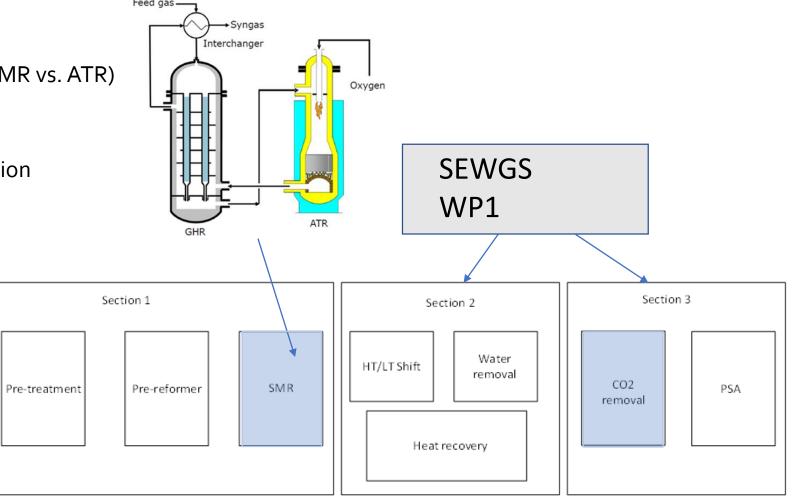

- New combination of existing technologies (H₂ from natural gas, CCS, hydrogen burning)
- Use of hydrogen to replace natural gas/coal burning & decarbonize refinery fuel gases
- All core technologies TRL 8-10
- No similar projects on this scale have been built (several studies such as H2M, HyNet, H21)

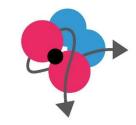



Starting points, conceptual design:

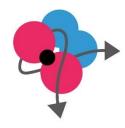
- ✓ Hydrogen production unit based on ATR (+ GHR) technology
- Energy feedstock = (treated) refinery fuel gas and natural gas
- ✓ Hydrogen production plant size based on the minimum case of the H-Vision solution space, (in which scope and all value drivers are covered)
- The quality of hydrogen used by refineries for combustion applications can be lower than current feedstock standards. The optimal depends on project objectives and overall cost of CO₂ avoided.
- Power plants will mainly use hydrogen for flexible power generation, as defined in the minimum case
 - Additional potential for steam integration between the new H₂ production plant and existing power plants
- ✓ Possibility to transport captured CO₂ via Porthos pipeline

H-Vision the solution space

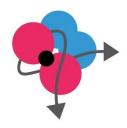



Integration of a Hydrogen Gas Turbine in the Boiler, BFW preheater cycle and IP steam cycle, picture from MHPS.

Blue Hydrogen critical design parameters


The most critical design parameters to influence the process against these objects are:

- Methane slip
- Steam-to-carbon ratio (SMR vs. ATR)
- Catalysts
- Gas Heated Reformer
- Shift converter configuration
- Hydrogen purification
- CO2 capture technology


Coal fired PP revamp – two options selected

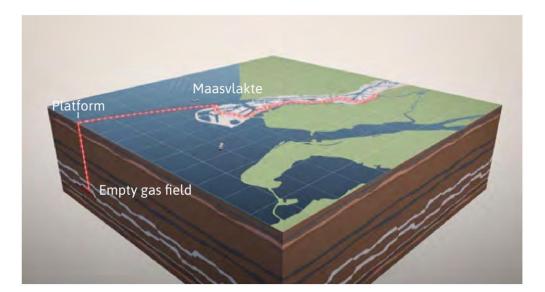
Ор	tions for Maasvlakte coal units	Biomass	H2 fired preheaters	Steam from H2 plant	H2 Integrated GT	Total H2 demand
1.	Biomass + steam integration with H-Vision plant + H ₂ fired preheaters for BFW	~40%	10%-15%	Max available from H2 production		190-285 MW per boiler
2.	Biomass + steam integration + 2 gas turbines (topping cycle & heat integration) + H ₂ firing?	~40%	10%-15% extra still possible?	Max available from H2 production	2 x 140 MWe GTs (41% eff.)	683 MW (GTs) + 190-285 MW per boiler

Case design parameters

Key parameters of H ₂ production via HP ATR					
ATR+GHR total plant capacity (H ₂ output)	700,000	Nm ³ /h H ₂			
H ₂ purity in the outlet stream	95.5	%			
ATR+GHR total plant capacity (fuel output)	2,400	MW thermal (LHV)			
	78	% on LHV basis			
Overall thermal efficiency	~82	% on HHV basis			
Total feedstock (input of NG + RFG) required	3,130	MW thermal (LHV)			
Excess steam production	305	t/h HP steam (100 bar)			
(available for export, with 20°C superheating)	100	t/h MP steam (30 bar)			
Electricity import	128	MW el			
Direct CO_2 emissions at the H-Vision plant	6	t/h CO ₂			
CO_2 captured at the H-Vision plant	498	t/h CO ₂			
CO ₂ capture & export factor	0.208	t CO ₂ / MWh			
CO ₂ purity in the export stream	99	%			
Overall capture rate (including residual carbon)	88	%			
Overall CO ₂ emissions factor	0.028	t CO ₂ / MWh			
Total plant cost	910	M€			
Fixed OPEX (2.5% of CAPEX annually)	22.8	M€			

Overview of variable factors & example calculation for the reference case							
Туре	Factor	Unit	Reference case				
NG/RFG feedstock	1.282	MWh feed/ MWh H ₂	2573.6 MW*				
Electricity (+5-10% for the NG and RFG compressors)	0.053	MWh el∕ MWh H₂	155.7+17.3 MW el**				
CO ₂ export (captured CO ₂)	0.208	t CO ₂ / MWh H ₂	608.3 t/h CO ₂				
CO ₂ emissions	0.028	t CO ₂ / MWh H ₂	83 t/h CO ₂				

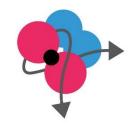
* RFG feedstock is subtracted from the total required, since this is not an additional cost ** Some of the required power will be generated using steam exported from the H-Vision plant, and could be therefore supplied at a lower-than-market cost

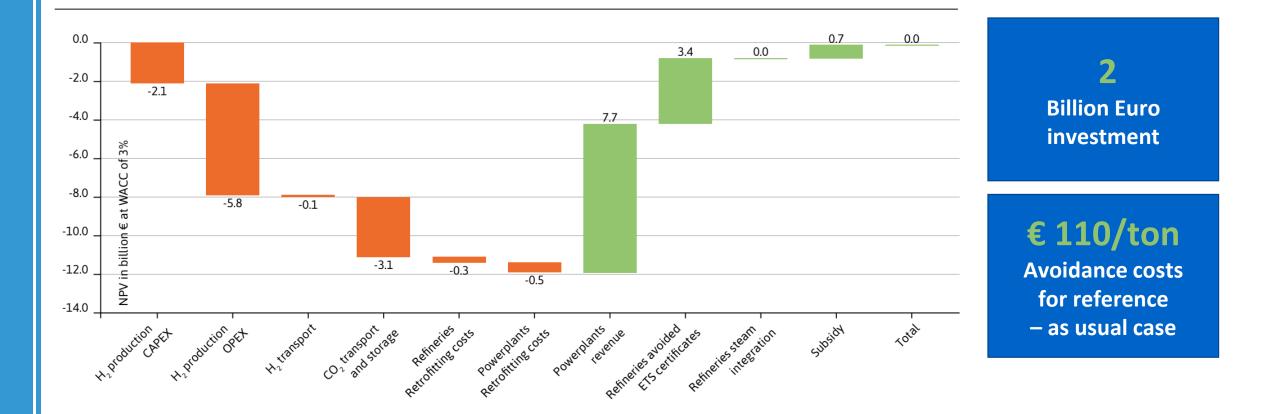

Dutch case industrial platform:

H-vision – Participants & location

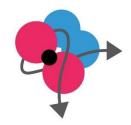
Dependencies for the Dutch Case study

Porthos (CCS)

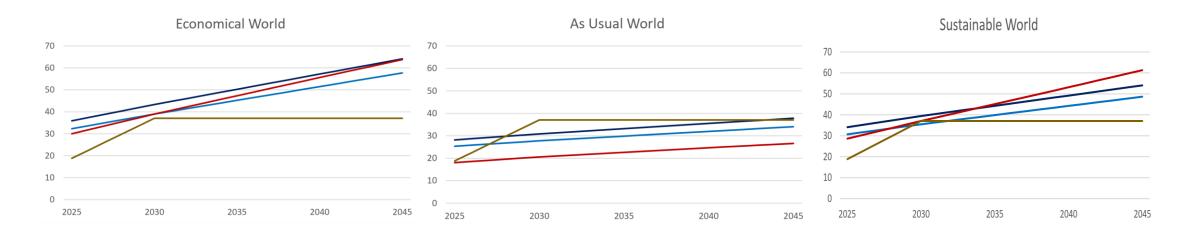

- Existing pipelines - New pipelines - Third parties Large industrial area


Hydrogen backbone (only for maximum scope)

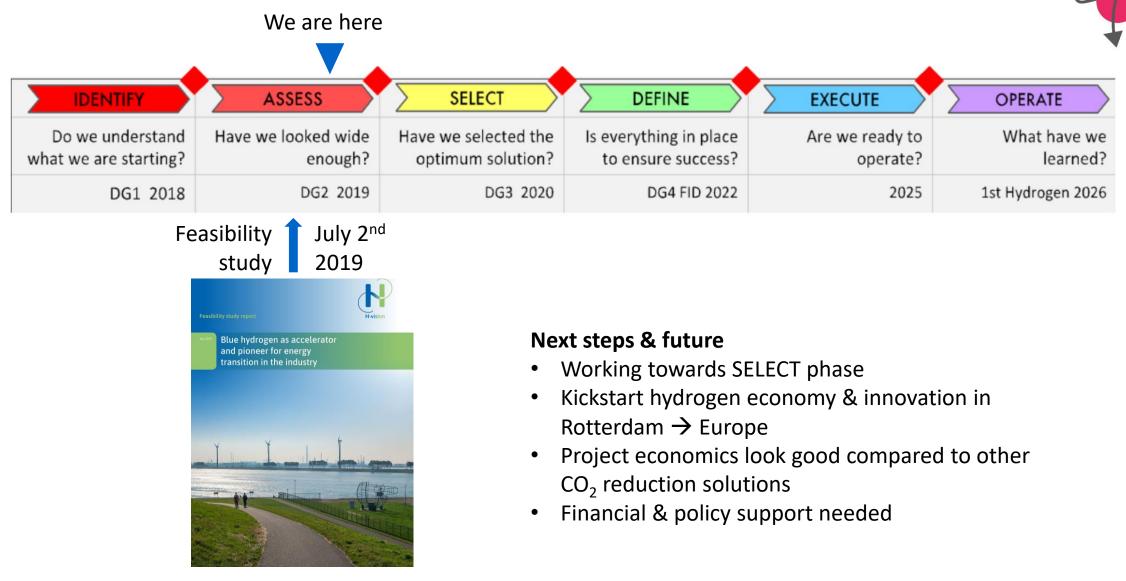
Other dependencies


- Financial support to close gap
- CO₂ price
- Regulation regarding CCS & CO₂ transport (international)

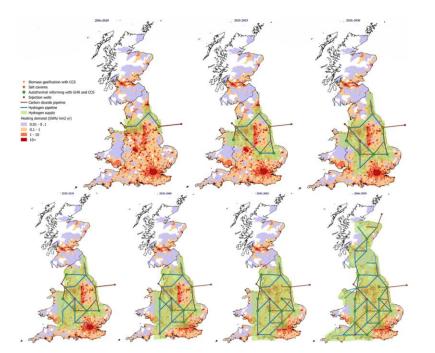
Investments & revenues

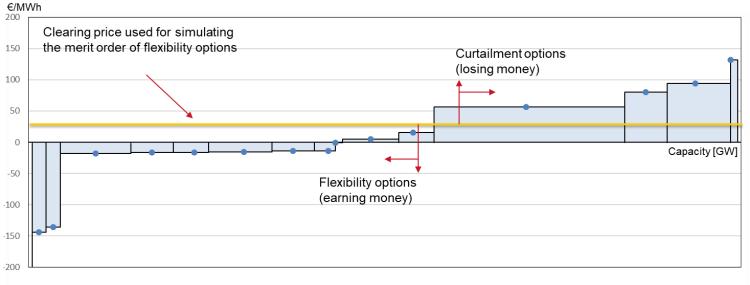


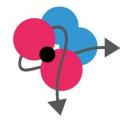
Scenarios & range



			Minimum scope	Reference scope	Maximum scope
	CO, abatement	Mt	27	79	130
As Usual	NPV (WACC 3%)	Billion €	-1.8	-2.8	
	Avoidance costs	€/t CO ₂	<u>146</u>	<u>111</u>	
Economical	NPV (WACC 3%)	Billion €	-1.3	-0.7	-2.1
	Avoidance costs	€/t CO ₂	<u>190</u>	<u>146</u>	151
Sustainable	NPV (WACC 3%)	Billion €		2.5	3.1
	Avoidance costs	€/t CO ₂		<u>86</u>	<u>91</u>


— Coal price incl. CO₂ (€/MWh) — Biomass price (€/MWh)


Stage gate of H-vision project


Elegancy Next steps

- Final study on future power market mechanism and further development of TNO Eye-tool: Market simulator that includes (renewable) power, Demand Side Response and Hydrogen market.
- > Firm up the Spatial model from (Imperial College) for the Dutch case study in the Rotterdam Region.
- > ROADMAP for the introduction of a low carbon industry in the Rotterdam Region.

Questions?

