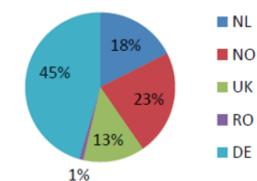
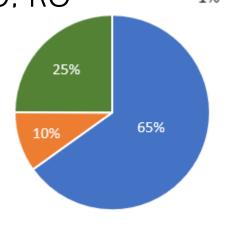


CATO
Meets the
Projects



Energy policy consultant, TNO

Project Characteristics


Accelerating Low CarboN Industrial

Growth through CCUS 'ALIGN-CCUS'

29 partners from NL, UK, DE, NO. RO

- 1 associated partner from DE
- Total budget: € 21.270.975
- Total funding: € 14.141.278
- Active 2017-2020

ERA ACT
 Institutes
 Industry

Project partners

Bellona

British Geological Survey

Forschungszentrum Julich

SINTEF Materials and Chemistry

Imperial College London

Leiden University

Mitsubishi Hitachi Power Systems Europe GmbH

Norcem

NTNU

TNO

Yara

RWTH Aachen University

Facilities-PACT

TAQA Energy BV

Technology Centre Mongstad

Tees Valley Combined Authority

Supporting industrial clusters

- Capture: Enable near-term deployment of CO₂ capture by improving performance and reducing costs
- Transport: Optimising large-scale CO₂ transport
- **Storage:** Reduce uncertainty in the provision of large-scale storage networks
- Utilisation: Establish the contribution of CCUS as an element for large-scale energy storage and conversion
- Social acceptance: Implementing CCUS in society

Preparing for large-scale capture demonstration

- Emission control
- Solvent management
- Dynamics and control
- Cost reduction

Preparing for large-scale transport networks for offshore storage of CO2

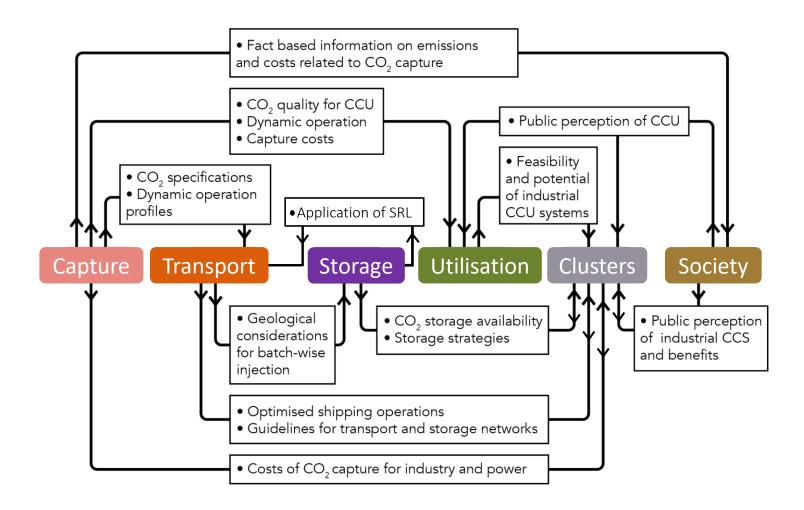
- CO₂ shipping
- Batch-wise injection
- CO₂ specifications
- · Planning for flexible networks

Strategic storage for ALIGN-CCUS European industrial clusters

- Standardizing storage readiness
- North sea storage appraisals
- Re-use of existing assets

Large-scale energy storage and conversion

- CCU demonstrator construction
- Engine adaption
- Operation and testing
- CCU integration and scale-up


Blueprints for low carbon industrial clusters through CCUS

- Teeside and Grangemouth (UK)
- Rotterdam (NL)
- North Rhine-Westphalia (DE)
- Grenland (NO)
- Oltenia region (RO)
- Commercial models for CCUS clusters

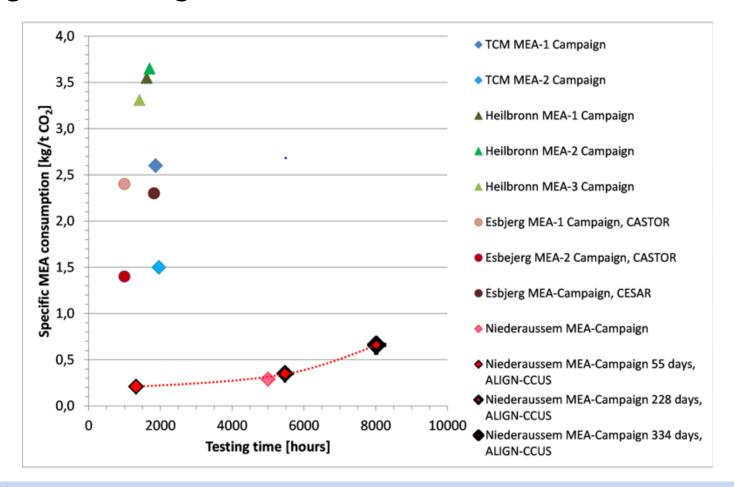
- Implementing CCUS in society
- Assessing public opinion
- Compensation strategies
- Improving EU dialogue on CCUS

Full-chain, well integrated

WP1 Capture

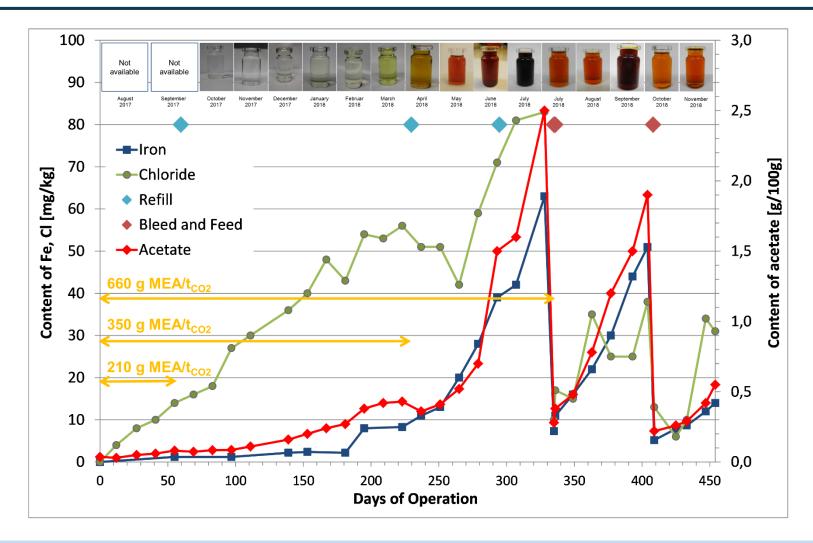
- Control of solvent emissions, development of aerosol counter-measures
- Control of solvent degradation, solvent testing
- Understand impacts of dynamic operations
- Cost optimisation based on pilot results

Pilot site	Operator	Location	Scale	Focus for ALIGN
Wilhelmshaven	UNIPER	Germany	Pilot-scale	Solvent management MEA
RWE Niederaussem	RWE	Germany	Pilot-scale	Emission control, solvent management, study dynamic effect / CCUS re-use
Tiller	SINTEF/NT NU	Norway	Pilot-scale	Solvent management 2 nd generation CESAR1 solvent system, NMPC control
ТСМ	TCM	Norway	Industrial- scale	Long-term test of CESAR1 solvent system



Solvent consumption

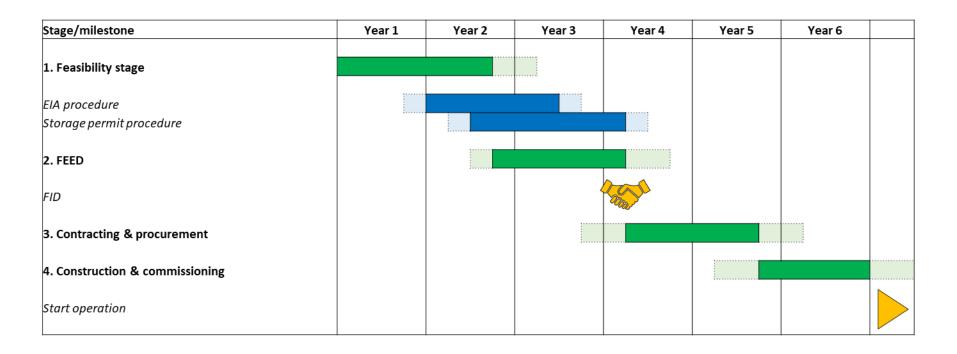
Long-term testing of MEA at RWE in Niederaussem > 13000 hours



Degradation products

WP3 – Large scale storage networks

WP3 aims to achieve three outcomes to support CO₂ storage deployment in the North Sea:


- Develop a methodology to produce standardised definitions of the levels of storage readiness for putative storage sites across the North Sea
- Create a portfolio of selected storage sites that have been characterised sufficiently to provide strategic storage for the leading ALIGN industrial clusters
- Create inventories of existing North Sea oil and gas infrastructure for possible reuse for CO₂ T&S.

Timeline for storage site development

Typical duration of development depleted field for CO₂ storage: ~ 6 years

WP3 -Storage readiness levels

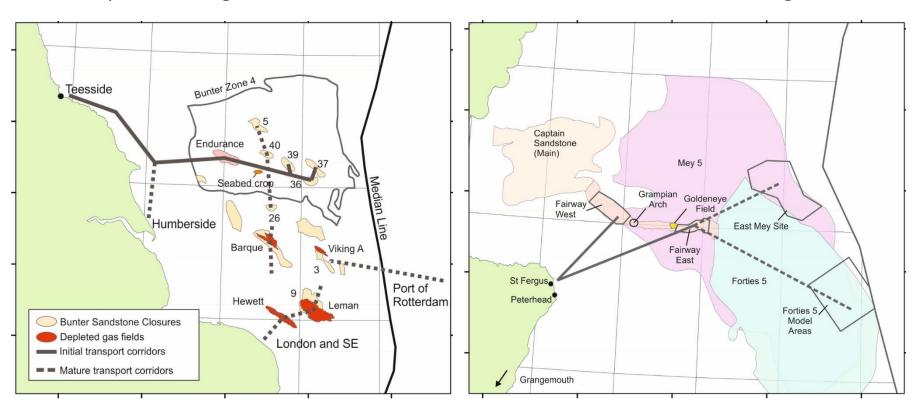
Project 'milestones'	SRL number	Description/title of SRL	Stages and thresholds in the storage site permitting process	Stages and thresholds in technical appraisal & project planning	
ALIGN ccus	SRL 1	First-pass assessment of storage capacity at country-wide or basin scales	Gathering		
	SRL 2	Site identified as theoretical capacity in a storage atlas	information for an exploration		
Feasibility study, Norway. Pre-feasibility	SRL 3	Screening study to identify an individual storage site & an initial storage project concept	permit	Technical appraisal	
study, UK & Netherlands.	SRL 4	Storage site validated by desktop studies & storage project concept updated			
Feasibility study, UK & Netherlands	SRL 5	Storage site validated by detailed analyses, then in a relevant 'real world' setting	Planning & plan iterations	Confirmation well drilled Outline planning for development Technical risk reduction completed Project planning & permitting iterations All planning work completed Construction & testing	
UK, Pre-FEED, Netherlands	SRL 6	Storage site integrated into a feasible CCS project concept or in a portfolio of sites (contingent storage resource)	for a storage permit •		
[†] Contingent storage resource	SRL 7	Storage site is permit ready or permitted	Storage permit♦ application & iteration		
Major investment decision (MID)	SRL 8	Commissioning of the storage site and test injection in an operational environment	Storage permit required Injection permit application		
	SRL 9	Storage site on injection	Injection permit required	Site construction completed Operation & monitoring	

Application of SRL to storage sites

Measure time taken and SRL achieved

Site FEED study or theoretical assessment		Duration of appraisal	Total time to Storage Permit (including appraisal)	SRL at start	SRL at end
Duration	White Rose FEED (National Grid, 2016a)	30 months	33 months	2	7
	Peterhead FEED (Shell, 2016)	16 months	20 months	2/3	7
	P18-4 pre-FEED (ROAD, 2018)	24 months	48 months	2/3	8

- Tabulated spend to achieve SRL 1-3 & SRL 4-8 for 16 EU sites
- Time and effort to advance the SRL is site specific:
 - whether within a hydrocarbon exploration region
 - has existing available data
 - previously performed appraisals
- Cost and time differs whether assessing a hydrocarbon field or a saline aquifer site

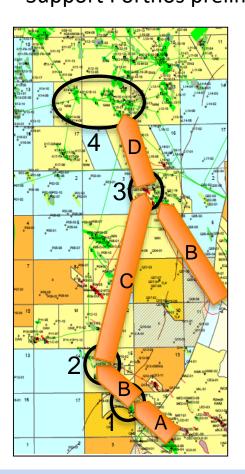


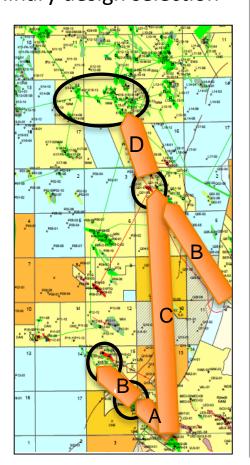
WP3 Highlights – better characterised stores UK

Conceptual storage networks for ALIGN-CCUS clusters Teesside & Grangemouth, UK

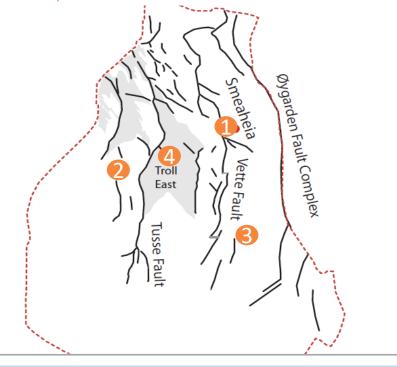
Multi-store sites with storage networks for scenarios of initial, growth and mature CCS projects deployment, shown as solid and dashed CO₂ transport corridors

Stores with higher SRLs assessed. Input from NL appraisal of batch-wise injection for Teesside selection.



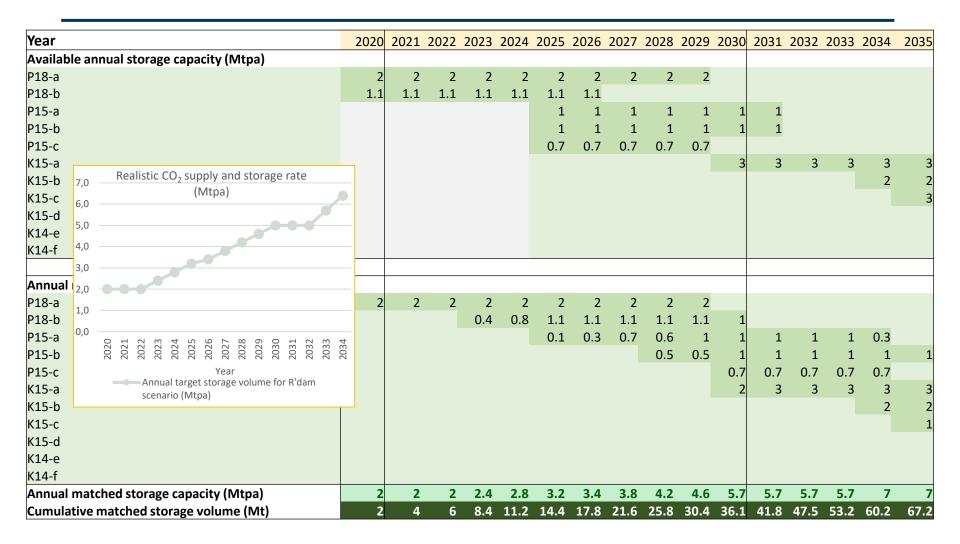


WP3 Highlights – better characterised stores NL & NO


Potential network development scenarios Support Porthos preliminary design selection

Roadmap for CO₂ Storage Smeaheia Hub

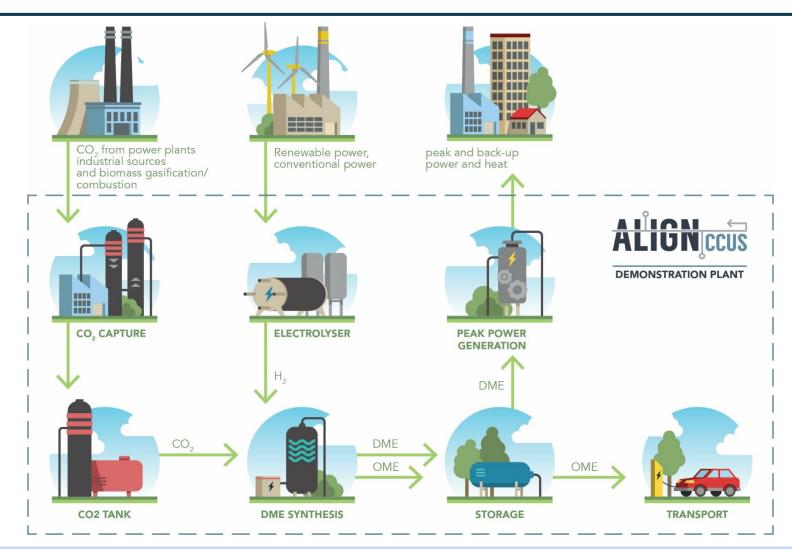
- 1) Smeaheia
- 2) Aurora structure
- 3) Smeaheia south
- 4) Post-Troll Field



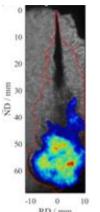
Matching CO₂ supply with storage capacity

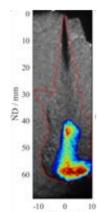
WP4 - CCUS as an element for large-scale energy storage and conversion

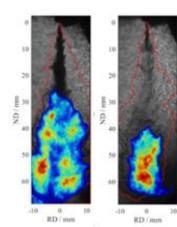
WP4 of ALIGN-CCUS aims to accelerate integration of CCU applications into the energy system by:


- Demonstrating the full CCU-chain and utilisation of CCU-products in the power and transport sectors
- Testing synthetic transportation fuel in internal combustion engine
- Obtaining acceptance for CCU by additional benefits: security of supply and low-emission fuels
- Providing clarity on the environmental impacts of a CCU process

WP4 – The ALIGN CCU Concept

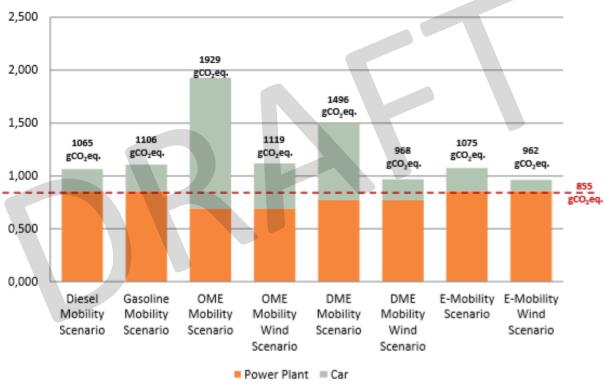

CCU advantages


- National interests lack of CO₂ storage space
- DME/OME Alternative transport fuels
 - Cleaner burning that diesel (lower NOx, no soot)
 - Only require minor adjustments to ICE, no major infrastructural changes


Injection system adaption: Optical Investigations in

High-Pressure Chamber

Inauguration event 19th November



Assessment of climate benefit

Preliminary mobility benchmarking scenarios

GWP (kg CO₂eq.) per functional unit (1 kWh & 1 km) for mobility scenarios

Follow us at www.alignccus.eu

OCT

About the Project

Project Partners

Project Outputs

News

Events Cor

O3 CCU demonstrator takes shape at RWE Niederaussem

Media Enquiries

Tom Mikunda, TNO Project Manager +31 (0)88 866 41 55 tom.mikunda@tno.nl

Twitter

Acknowledgements

ACT ALIGN CCUS Project No 271501

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is cofunded by the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

www.alignccus.eu

