

Copernicus Institute of Sustainable Development

Machteld van den Broek

Role of CCS in the power system

CCS in the power sector

Climate agreement: CCS for power

Climate agreement

- < 3 Mt
- Temporary solution
- Focus on wind and solar.

but power sector should be

 cost-effective and reliable and need for negative emissions

Main message

Exploit benefits of CCS in power sector

- Four reasons
 - 1. Negative emissions
 - 2. Cheaper
 - 3. Reliability power system
 - 4. Use existing assets

Negative emissions

Source: G. Peters <u>https://www.cicero.oslo.no/no/posts/klima/stylised-pathways-to-well-below-2c</u>

CCS for negative emissions

Source: https://www.climatecentral.org/news/first-commercial-co2-capture-plant-live-214/

Costeffective portfolios

Source: www.electricitymap.org

Levelised cost of electricity

Levelised cost of electricity

LCOE in € per MWh

10

Levelised cost of electricity

LCOE in € per MWh

European power system in 2050

 in cost-effective pathway from current electricity portfolio to low carbon portfolio:

coal-fired power plants are retrofitted to BECCS.

CCS in power sector

Backup slides + articles

- Bas van Zuijlen, William Zappa, Wim Turkenburg, Gerard van der Schrier, Machteld van den Broek, Cost-optimal reliable power generation in a deep decarbonisation future, Applied Energy, Volume 253, 2019, <u>https://doi.org/10.1016/j.apenergy.2019.113587</u>
- William Zappa, Martin Junginger, Machteld van den Broek, Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe. Submitted.

data

Technology	TCR $(\mathcal{E}_{2016}/kW)^1$	FOM (€ ₂₀₁₆ /kW)	VOM (€ ₂₀₁₆ /MWh)	Efficiency (-) ²	Lifetime (yr)	Build time (yr)	
OCGT	600	17	11.0	44.0%	30	1	Abbreviations: OCGT: open cycle gas turbine, CCGT:
CCGT	1,000	22	2.5	62.0%	30	3	critical, IGCC: Integrated gasification combined cycle, PV:
CCGT-CCS ³	1,600	33	4.0	55.0%	30	4	storage, ROR: Run-of-river, CCS: Carbon capture and
PCSC	2,000	41	3.7	48.0%	40	4	storage; DAC: Direct air capture of CO ₂ ; BECCS: Bio energy with carbon capture and storage
PCSC-CCS ³	3,300	65	5.6	38.0%	40	5	¹ The total capital requirement (TCR) is calculated based on the total overnight costs, the build time and interest rate. The
Coal-IGCC	3,000	59	5.1	47.0%	35	5	interest during construction is included assuming that the investments costs are distributed equally over the
Coal-IGCC-CCS ³	3,700	85	6.1	41.0%	35	6	construction time. ² The efficiency is defined as net efficiency at full load power
Nuclear	5,300	66	2.5	38.0%	60	7	and at lower heating value ³ A capture ratio of 90% is assumed
Onshore Wind	1,300	35	0.0	-	25	1	Additionally, some technologies that are not covered by the JRC reports are also included in this study. Their techno-
Offshore Wind	2,600	49	0.0	-	30	1	economic parameters (including sources) are presented in Table 3.
Utility PV	500	8	0.0	-	25	1	⁴ It is assumed that fluidised bed technology is used for bio energy.
Roof PV	600	12	0.0	-	25	1	⁵ The techno-economic parameters are taken to be same as the Based on CCGT data
Bio energy ⁴	2.500	38	3.9	38.0%	25	3	⁶ Based on Siemens Silyzer projections ⁷ In this case, kW refers to the electric input capacity
Geothermal	3.500	60	0.0	-	30	3	⁸ Based on the Bio energy data and the relative cost increases and efficiency drop between PCSC and PCSC-
Hydropower (PHS)	4.000	51	5.1	-	60	3	CCS
Hydropower (STO)	4,000	51	5.1	-	60	3	fired OCGT might often have smaller capacities than their
Hydropower (ROR)	3,500	38	5.0	-	60	3	parameters are assumed to be similar.
Hydrogen turbine ⁵	1 000	19	2 5	62.0%	30	3	from Socolow et al., assuming a 100% capacity factor.
Hydrogen electrolyser ^{6,7}	400	7	2.5	65.5%	10	1	Additionally, DAC's capture 2,000 kgCO ₂ MWh ⁻¹ .
	400	1	0.0	05.5%	10	1	
BECCS ^{3,0}	4,100	49	5.9	30.1%	25	4	
OCGT (biogas)9	600	16	11.0	44.0%	30	1	
DAC ^{7,10}	42,500	-	137	-	20	1	

data

Fuel	Price ^a (€ GJ ⁻¹)	Maximum fuel usage ^b (EJ yr ⁻¹)	Emission factors (kgCO ₂ GJ ⁻¹)
Natural Gas	7.0	-	56
Coal	2.1	-	101
Uranium	1.0	-	0
Solid woody biomass	6.9	4.9	0
Biogas	16.9 °	1.0	0

^a The natural gas and coal fuel costs are the European import prices taken from IEA [32] 2DS scenario, the uranium price is taken from [5] and the solid biomass and biogas price are taken as the average weighted costs for biomass from the medium availability biomass scenario of JRC [33]

^b Based on the medium availability biomass scenario of JRC [33]. These biomass potentials only consist of biomass that can be produced in the countries within the scope of this study. Furthermore, sugar, starch and oil crops are excluded as these are reserved for biofuel production. Black liquor and wet silage are excluded due to a lack of data availability and stem wood is reserved for heating purposes.