FUNMIN

FUNdamental Studies of **MIN**eral Carbonation with Application to CO₂ Utilisation

Devis Di Tommaso & Greg Chass ACT knowledge sharing workshop Rotterdam, 8-9 June 2022

Carbon Reservoires & Fluxes + Human Fluxes

CO2 into solid AS added-value products

"CCUS can create new industries and markets using carbon dioxide, such as chemicals, plastics, and building materials" *

Project implementation

Core activities (**WP1-3**) to characterize the **molecular processes** controlling MgCO₃ crystallization; applied component (**WP4**) to **optimise** conditions

Interaction between the scientific (**WP1-3**) and practical (**WP4**) components of the project. **WP1**: Mg-dehydration; **WP2**: MgCO₃ nucleation; **WP3**: Magnesite Growth; **WP4**: Upscaling

Key achievements

- 1. Control rate-determining Mg²⁺ dehydration
- 2. Database of additives promoting MgCO₃ formation
- 3. Empirical tracking of additives' effect on MgCO₃ production
- 4. Mechanism of MgCO₃ production & form
- 5. (amorphous-to-crystalline transition
- 6. Flow cell(s) for "real time" watching CO_2 mineralization
- 7. Pre-industrial bulk rector for generating 10s of kg of carbonates

WP1: Processes controlling Mg²⁺ dehydration

CrystEngComm HOT article:

"New insights into the role of solution additive anions in Mg²⁺ dehydration: implications for mineral carbonation"

Key points:

 $Mg(H_2O)_6^{2+}$ only stable coordination in pure water

- Additives help initiate mineralisation
- Promotion of low-temperature mineralisation

Front cover *CrystEngComm*, 2021, 23, 4896-4900

WP1: Computational database of solution additives

Non-competitive ions promoting Mg²⁺ dehydration

Key points:

- Extensive computer simulations of the early stages of MgCO₃ nucleation in the presence of solution additives
- Characterised the ability of thirty additives to promote dehydration based on well-defined molecular level criteria
- Identification of solution composition conditions catalysing the low-temperature CO_2 conversion into $MgCO_3 \rightarrow promotion of CO_2$ -mineralisation at 25° C

WP2: Effect of solution additives on MgCO₃ aggregation

Key points:

- Formation of stable carbonates with non-hazardous additives (acetate, chloride, and sulphate)
- Agreement between simulation ↔ experiment

Crystal Growth & Design, 2022, 22, 3080–3089.

WP2: Experimental verification of MgCO₃ growth

Key points:

- Real-time nucleation measurements under different solution conditions (CH_3COO^- , SO_4^{2-} , NO_3^- , ...)
- Classical nucleation pathway revealed
- The presence of acetate ions promotes "low" T MgCO₃ formation

hydrothermal conditions

Raman monitoring during nucleation and growth of MgCO₃ particles and crystals under

 $MgCl_2.7H_2O(aq) + NaCO_3(aq) \rightarrow MgCO_3.3H_2O(s), T = 90^{\circ} C (stable hydrated phase)$

 $Mg(CH_{3}COO)_{2} (aq) + NaCO_{3} (aq) \rightarrow$ MgCO₃·3H₂O (s) → Mg₅(CO₃)₄(OH)₂·4H₂O (s) → MgCO₃ (s), T = 90 ° C (fast)

WP4: Scale-up of CO₂-mineralisation pre-industrial scale & control of Mg-carbonate growth

- 1st generation bulk CO2-mineralisation reactor built . Has 10L capacity, generates carbonates @ ~1-2kg / hour
- Modulating conditions and solution chemistry generates differing forms → allowing for control of particle sizing and properties

1-2kg / hr

WP4: Tracking CO₂ mineralisation from nano- to bulkscales – Neutron beam analyses in real-time

WP4: Mg-Carbonates produced @ ~50-100g scales

- Mineralisation reactor retained industrial conditions and product homogeneity, residual carbonates in reactor likewise easily processed (removed) confirming reactor re-use (i.e., industrial robustness)
- Output product Mg-carbonates (i.e., nesquehonite) was confirmed as pure via XRD measurements

WP4: Determining viscosity in CO₂-mineralisation solutions with quasi-elastic neutrons

Key Points:

- Quasi-elastic scattering provides real-time tracking of viscosity. Changes ongoing Differing 'elasticity' values for the solutions are related to differing bulk viscosity and aggregation present and evolving...
- In this case, precise resolution of H_2O -solvent motions and differing aggregations of solutes.

WP4: Scale-up: Here to 10+kg / hour. Visualising Bulk Mineralisation

WP4: Scale-up: Precipitates form aggregates & clusters

• Precipitates initially form flocculates

 Aggregates and clusters begin to form then supra- aggregate structures: stalactite like cones

• Filtration generates fine carbonate particles, which can then be dried or left as wet slurries

WP4: Scale-up: What to do with carbonates? Infrastructure

WP4: Scaling-up the Scale-Up: Compatibility with Concrete

compaction

- Mg-CO₃ (s) can be directly added to concrete; replacing cement (up to 30%) = \in \$ and lowers CO₂ footprint
- MgCO₃s 'fixed' carbon further reduces CO₂ budget
- We have also added agricultural wastes = preventing their degradation and release of CO_2 , methane, etc.. (agriculture contributes ~9.5 gT/yr = ~1/3 of all emissions)

Sustainable Project Lifecycle

Demolition Waste – Same Fate as Fly Ash?

•••• Climate Change: MPs say building d 🗙 🕂

 \leftarrow \rightarrow C (bbc.com/news/science-environment-61580979

Climate Change: MPs say building demolitions must be reduced

By Roger Harrabin

BBC energy and environment analyst

© 26 May | **₽ Comments**

Q |☆ ☆ 🔲 🎴 (Update

https://www.bbc.com/news/science-environment-61580979

26 May, 2022

Acknowledgements

This project FUNMIN is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No 294766). Financial contributions made from Department for Business, Energy & Industrial Strategy (BEIS) together with extra funding from NERC and EPSRC research councils, United Kingdom, ADEME (FR), MINECO-AEI (ES)