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Abstract 

We have evaluated the feasibility of supported amine sorbents (SAS) for their application in post-

combustion CO2 capture. For this, the energy efficiency of a power plant equipped with a supported 

amine based capture facility is compared with the energy efficiency of a power plant equipped with a 

standard MEA-capture facility using the Spence
® 

software tool developed by DNV-KEMA. Based on the 

simulations performed, application of a SAS-based capture facility at a natural gas combined-cycle 

(NGCC) plant is potentially 19% more energy efficient than a MEA-capture facility. For a pulverized-

coal (PC) plant, the SAS-based plant could save up to 32% of the energy required in the MEA process.  
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1. Introduction 

 

Application of carbon capture and storage (CCS) at fossil fuel burning plants could significantly reduce 

the global emission of anthropogenic CO2. However, using the current state-of-art technology, this would 

result in an increase in the cost of electricity by 35-85%, mainly due to high cost of CO2 capture which 

are making up around 80% of the total cost of CCS [1]. This large increase in cost of electricity is 

considered unacceptable and the development of a more cost-effective capture technology is now the 

main objective of CO2 capture research.  

We aim to reduce the CO2 capture costs by developing an adsorption based post combustion CO2 capture 

process using supported amine sorbents (SAS), anticipated to have a lower energy requirement than the 

conventional amine scrubbing technology. A large part of the energy required in this absorption based 

process, is associated with heating of the aqueous amine solution from the absorption temperature to the 

desorption temperature and with the evaporation of solvent in the desorber column. 
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Replacing H2O by a solid support greatly reduces the energy required for regeneration, due to the lower 

heat capacity of solid supports compared to water. In addition, the evaporation of water is prevented, 

reducing the process energy requirement even further.  

Based on a process analysis study performed in this work, we concluded that an adsorption based capture 

process could potentially reduce the net energy requirement for CO2 capture, from roughly 2.7 and 3.3 

GJ.tCO2
-1

 for MEA scrubbing [2], to around 2 GJ.tCO2
-1 

using supported amine sorbents.  

These supported amine sorbents consist of a high surface-area support with amine functional groups 

immobilized on or grafted to its surface [3]. Work has been done on optimization of these sorbent 

particles by tuning support characteristics, amine type and amine loading [4-8]. Porous carbon [9], 

zeolites [10], polymers such as poly(methyl methacrylate) and polystyrene [11], and silica’s [12-14] are 

all considered as support candidates. Key strengths of these solid sorbents include: fast CO2 uptake rates, 

high CO2 capacities even at low CO2 partial pressures, a low adsorption heat and relatively mild 

regeneration conditions.    

 

In this work, we investigate the feasibility of supported amine sorbents for post combustion CO2 capture 

by combining experimental work with a process simulation study. In the experimental section of this 

work, supported amine sorbents were prepared by physical impregnation of polymethylmethacrylate 

(PMMA) with tetraethylenepentamine (TEPA) and optimized with respect to amine loading and support 

pore size. The sorption characteristics of the developed sorbent material were determined for a wide range 

of temperatures and pressures.  

 

We studied the technical feasibility of sorbent regeneration at high pressure as an option to further 

improve the energy efficiency of this novel CO2 capture process. Compression of the captured CO2, 

required for cost effective transportation and storage, adds around 20-25% to the total electrical energy 

requirement of the CO2 capture facility [15]. Releasing CO2 at 5 bar in the sorbent regeneration step 

would reduce the electrical energy required for compression.  

 

Results obtained from the experimental work were subsequently used as a basis for process analysis study 

based on the Spence
® 

software tool developed by DNV-KEMA. The KEMA-Spence
® 

tool has been 

developed specially for the power plant sector and is nowadays successfully applied in many CO2 capture 

studies, including various integration studies. Using the Spence
® 

software tool, we have evaluated the 

energy efficiency of a power plant equipped with this novel capture system with that of a reference power 

plant equipped with an MEA-based capture facility.  

 

2. Experimental 

 

Supported amine sorbents were prepared by physical impregnation of polymethylmethacrylate
®
 (Diaion

TM
 

HP-2MG, Aldrich) with tetraethylenepentamine (TEPA, Aldrich). The sorbent material was optimized 

with respect to amine loading and support pore volume yielding a sorbent with a CO2 capacity of 3.8 

mol.kg
-1

 sorbent [16]. A NETSZCH STA 449 F1 Jupiter thermal gravimetric analyzer (TGA) was used to 

assess the adsorption and desorption performance of the prepared sorbents.  

Adsorption isobars of the developed sorbent material are presented in Figure 1. The sorbent sample was 

heated from 40⁰C up to 140⁰C at a heating rate of 0.1 K.min
-1 

in 1 vol.%, 5 vol.%, 10 vol.% and 80 vol.% 

CO2 atmosphere (balance N2) at a total flow rate of 100 ml.min
-1

. As the specific configuration of the 

TGA equipment limited the CO2 concentration to a maximum of 80 vol.% of CO2 at 1 atm, therefore 

desorption experiments in pure CO2 were atmosphere were not performed. Sorbent operating capacities 

were calculated for two different cases; CO2 capture at a natural gas combined cycle (NGCC) plant and 

CO2 capture at a pulverized coal (PC) plant.  
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Figure 1: Adsorption isobars in 1vol.%, 5vol%, 10vol.% and 80 vol.% CO2 (Ptotal = 1 bar).  

 

Flue gas from a NGCC plant typically contains around 4-7 vol% of CO2 whereas flue gas from PC plant 

contains around 10-15vol% of CO2. For adsorption at 60⁰C, the sorbent working capacity was calculated 

as the difference between the CO2 capacity under adsorption conditions and the CO2 capacity at elevated 

temperatures, in 80vol% CO2, given by the adsorption isobars presented in Figure 1. 

 

Capturing CO2 from flue gas containing 10 vol.% for adsorption of CO2 at 60⁰C and desorption in 80 

vol.% CO2 at 130⁰C working capacities of around 3.1 mol.kg
-1

 sorbent can be achieved using the 

developed sorbent. For capture from flue gas containing 5 vol.% of CO2, working capacities up to 2.6 

mol.kg
-1

 sorbent can be achieved under same adsorption and desorption conditions. As releasing CO2 at 

elevated pressure in the sorbent regeneration step would reduce the electrical energy required for 

compression of CO2, high pressure desorption experiments were performed in a fixed bed set-up to study 

the technical feasibility of this regeneration concept. CO2 was captured from simulated flue gas containing 

6.7 vol.% of CO2 (balance N2, 1 bar) at 40⁰C. During sorbent regeneration, the CO2 pressure inside the 

reactor was controlled using a back pressure regulator. Concluding from Figure 2, the sorbent can 

successfully be regenerated at elevated CO2 partial pressures (up to 10 bar). Part of the CO2 adsorbed by 

the developed sorbent, around 0.6 mol.kg
-1

 sorbent, can already successfully be released in 5 bar CO2 at 

140⁰C. The rest of the CO2 captured is released when the CO2 pressure is subsequently lowered to 1 bar. 

 

Based on these experimental results, a two-step regeneration scheme seems attractive; e.g. a first 

regeneration step at 5 bar CO2, followed by near complete sorbent regeneration at 1 bar CO2. In this way, 

10% of the CO2 compression energy can be saved. To regenerate the sorbent at higher pressures, slightly 

higher regeneration temperatures are required for achieving the same operating capacities introducing a 

trade-off between the electrical energy input and the thermal energy input of adsorption based capture 

system. It should be noted that the sorbent’s thermal and chemical stability needs to be improved to allow 

for sorbent regeneration under these conditions. This is the focus of current research at the University of 

Twente.   
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Figure 2: Sorbent operating capacity as a function of the regeneration pressure at regeneration 

temperatures of 140⁰C and 150⁰C 

 

3. Methodology 

 

Within DNV-KEMA an in-house software tool is available, which is developed and utilized for the 

conceptual design and integration of CO2 capture plants with existing power plants; the Spence
® 

model. 

The KEMA-Spence
® 

model has been successfully applied in many CO2 capture studies, including 

integration studies.  

 

In this work, the Spence
® 

software tool is used for four integration cases. In this feasibility study, the 

MEA scrubbing technology was treated as benchmark technology. A standard NGCC plant and a PC 

plant both equipped with an optimized MEA-based capture facility were simulated. The simulation results 

were compared with those for simulations of the NGCC plant equipped with a supported amine based 

capture facility and the PC plant equipped with a supported amine based capture facility. In this 

comparison, attention is focused on the amount of electrical energy consumed by the capture facility per 

unit mass of CO2 captured of a power plant equipped with this novel capture systems relative to a 

reference power plant equipped with an MEA-based capture facility. Additionally, we evaluated the 

upside potential for the solid sorbent capture process and also the impact of the most important process 

parameters like: sorbent operating capacity, regeneration temperature and regeneration pressure. 

The NGCC plant has a net power output of 446 MW. The PC plant produces 1068 MW. The thermal 

energy required for solvent/sorbent regeneration is extracted from the power plant’s low pressure steam 

cycle at 4.6 bar and 3.5 bar for the NGCC plant and the PC plant respectively.  

 

4. System design 

 

General information regarding the CO2 capture facility are summarized in Table 1. Although the system 

boundary of interest here does not include CO2 transport and storage systems, CO2 compression is 

assumed to occur within the facility boundaries. The model of the CO2 compression is made of 8-stages 
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compression. 8 compression stages was found optimal for this application considering the trade-off 

between power consumption and investment costs. The first five stages of compression are equipped with 

condensate removal devices to extract water that condenses during cooling. After the first five stages a 

Tri-Ethylen-Glycol (TEG) Dewatering process reduces the water content below the limit set by pipeline 

restrictions (50 ppmw). The compression is then completed with three additional intercooled 

compressors. The pressure ratio is assumed to be the same for each compression stage.  

 

Table 1: Capture plant general data  

 

Parameters NGCC PC 

Flue gas CO2 content (vol.%) 4.4 13.7 

CO2 captured (kg/s) 38.0 202.3 

Capture efficiency  (%) 90 90 

CO2 purity (%) 95 95 

Pressure CO2 product stream (bar) 110 110 

 

 

4.1 MEA-capture facility: 

 

The MEA-based capture facility was modelled as a standard regenerative absorption-desorption system 

using a  MEA absorption liquid with a net thermal energy input of 3.0 GJ.tCO2
-1

. Values for the heat 

requirement for the leading absorption technologies are between 2.7 and 3.3 GJ. GJ.tCO2
-1

, depending on 

the solvent process [2]. The absorber and desorber column were operated at 110 kPa and 40⁰C and 170 

kPa and 118⁰C respectively. The MEA system pressure drop is 81.5 mbar for the PC system and 40 mbar 

for the NGCC system. In the electrical energy requirement of the capture system includes the energy 

required for (1) the flue gas blower, (2) the pumps to circulate the absorption liquid from the absorber to 

the desorber column  and v.v. and (3) the CO2 product gas compressor. 
 

4.2 SAS-capture facility: 

 

The supported amine capture facility was modeled as a regenerative adsorption-desorption system with 

the sorbent material circulating between the adsorber and desorber column. Both columns are operated at 

atmospheric pressure with the adsorber column operated at 60⁰C and the desorber column at 130⁰C. The 

system pressure drop in the absorber and desorber column is calculated based on a dual fluid bed design 

including the static pressure drop of the bed and the pressure drop over the gas distributor. The system 

pressure drop was calculated to be 170mbar. The thermal energy input of the supported amine capture 

facility was calculated based on the methodology developed by Li et. al. [17]. The thermal energy input 

equals the sum of the desorption heat, equal to 1.5 GJ.tonne
-1

 CO2 [18], and the sensible heat required to 

heat the sorbent material from the adsorption temperature up to the desorption temperature. 

  

The sensible heat energy requirement is a function of the heat capacity of the sorbent material (1.5 KJ.kg
-

1
.K

-1
), the temperature difference between the adsorption column and the desorber column (70K) and the 

working capacity of the sorbent material.  
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Figure 3: Thermal energy input of the SAS-capture facility 

 

In Figure 3, this net thermal energy requirement of the process is plotted as a function of the sorbent 

operating capacity. From these energy calculation it was concluded that application of this process could 

potentially reduce the thermal energy requirement for CO2 capture, from 3 GJ.tCO2
-1

, for MEA scrubbing,
 

to around 1.8 GJ.tCO2
-1 

at sorbent operating capacities between 2.6-3.1 mol.kg
-1

. These values are 40% 

lower than the values reported for MEA-based systems with advanced stripper configurations and 30% 

lower than the lowest values reported for the KS-1 solvents by MHI [15]. In these calculations it was 

assumed that 75% of the sensible heat required for heating the sorbent material can be recovered indirect 

or direct in a solid-solid heat exchanger. For comparison, the liquid-liquid heat exchanger in the MEA 

process is capable of reusing around 90% of the sensible heat. Moreover, in these calculations the 

possible co-adsorption of water in the adsorber column, is not taken into account. 

 

Concluding from Figure 3, at working capacities higher than 2 mol.kg
-1

 the reaction heat will dominate 

the thermal energy demand of the SAS-based capture facility. Increasing the operating capacity further 

will not result in a substantial further decrease the thermal energy requirement of the SAS-capture system.  

In the electrical energy requirement calculated for the capture system, the power consumption of the flue 

gas blower, the energy required to circulate the sorbent from the absorber to the desorber column and the 

energy required for compression of the CO2 product stream are included.  

 

5. Process analysis results 

 

Based on the energy calculation performed in section 4.2 application of the adsorption based capture 

process can potentially reduce the thermal energy requirement for CO2 capture from 3 GJ.tCO2
-1 

to 

around 1.7 GJ.tCO2
-1

. Using the Spence
® 

software tool, a standard NGCC plant and a PC plant both 

equipped with an optimized MEA-based capture facility were simulated and compared on energy basis 

with simulation of the NGCC plant equipped with a supported amine based capture facility and the PC 
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plant equipped with a supported amine based capture facility. The main results of the simulations are 

summarized in Table 2. 

 

Table 2: Spence
® 

simulation results 

 

Plant data NGCC  PC  

Ref. MEA   SAS            Ref. MEA SAS 

Heat input (MWth) 756.7 756.7 756.7 2307.3 2307.3 2307.3 

Gross power (MWe) 452.4 408.2 431.1 1116.7 935.9 1031.8 

Net power (MWe) 445.5 384.2 395.8 1068.6 804.0 889.0 

Own consumption (MWe) 6.0 5.1 5.6 45.9 46.0 45.9 

Transformer losses (MWe) 0.9 0.8 0.8 2.1 1.6 1.8 

Capture plant electricity demand (MWe) - 6.0 15.3 - 19.9 22.2 

CO2 Compression (MWe) - 12.1 13.6 - 64.5 72.9 

Emission rate (tCO2.MWh
-1

) 0.37 0.04 0.04 0.84 0.11 0.11 

Net plant Efficiency (%) 58.9 50.8 52.3 46.3 34.8 38.5 

Required extra input (% of MWth) - 16.0 12.7 - 33.0 20.2 

 

Since a PC plant emits 2.7 times more CO2 per MWh than a NGCC plant, due the lower heating value of 

coal compared to gas, application of CO2 capture at a PC plant has a higher impact on the plant power 

output. To compensate for the lower power output, a NGCC-MEA plant requires 16% more input 

compared 33% for a PC-MEA plant. The installation of a capture facility at a power plant results in a 

decrease in power output as steam is extracted from the power plant for solvent and sorbent regeneration. 

However, due to the lower thermal energy requirement of the sorbent based process, the loss in gross 

power is less than half of the power lost when a solvent based process is installed. A NGCC-SAS plant 

requires 12.7% more input and a PC-SAS plant 20.2% more compared 16% and 33% for the MEA-based 

equivalent. 

 

In Figure 4, the electricity demand of the capture facility is plotted for each case study performed. The 

column labeled as ‘NGCC-minimum’ and ‘PC-minimum’ represent the thermodynamic minimum work 

required for CO2 separation and compression to 110 bar. The ‘Desorption’ energy, in Figure 4, is related 

to the decrease in the electrical energy output of the power plant caused by the extraction of steam for 

sorbent/solvent regeneration. The ‘Electrical’ energy includes (1) energy for sorbent/solvent circulation 

and (2) the power demand of the flue gas blower. The ‘Compression’ energy is related to the power 

consumption of the CO2 compressor. Concluding from Figure 4, installation of a SAS-based capture 

facility at a NGCC plant is 19% more efficient on an energy basis than a MEA-based capture facility. For 

a PC plant a sorbent based plant is 33% more efficient.  



8 R. Veneman/ Energy Procedia 00 (2012) 000–000 

 
Figure 4: Break down of the capture facility electricity consumption.   

 

The two biggest electricity consumers within the power plant (including the capture facility) are the CO2 

compressor and the flue gas blower. The flue gas blower is dominating the capture plant’s electricity 

demand, especially for the sorbent based capture at a NGCC plant. This is mainly due to the higher 

pressure drop for sorbent based capture and the higher flue gas flows at a NGCC plant. Designing a 

system with a low pressure drop could further reduce the energy requirement. Additionally, high pressure 

sorbent regeneration can save 10 vol% of the CO2 compression energy. This will further reduce the 

overall capture energy with around 5%. 

 

6. Conclusions 

 

We have investigated the feasibility of supported amine sorbents for post combustion CO2 capture by 

combining experimental work with a process analysis study. Supported amine sorbents, prepared by 

physical impregnation of PMMA with TEPA, were tested experimentally for application in post-

combustion CO2 capture, especially with respect to cyclic capacity and the feasibility of high pressure 

sorbent regeneration. Using the developed sorbent we can potentially reduce the thermal energy 

requirement for CO2 capture from 3 GJ.tCO2
-1 

to around 1.7 GJ.tCO2
-1

. Using the Spence
® 

software tool, 

developed by DNV-KEMA, we have evaluated the energy efficiency of a power plant equipped with this 

novel capture systems to that of a reference power plant equipped with a MEA-based capture facility. 

Installation of a SAS-based capture facility at a NGCC plant is 19% more efficient of an energy basis 

than a MEA-based capture facility. For a PC plant a sorbent based capture plant is 33% more efficient.  
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